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Introduction and acknowledgements

I n t r o d u c t I o n  a n d  a c k n o w l e d g e m e n t s

Many people seem to think that you have to be really 
clever to understand Physics and this puts some people 
o studying it in the rst place. So do you really need a 
brain the size of a planet in order to cope with IB Higher 
Level Physics? The answer, you will be pleased to hear, is 
‘No’. In fact, it is one of the world’s best kept secrets that 
Physics is easy! There is very little to learn by heart and 
even ideas that seem really dicult when you rst meet 
them can end up being obvious by the end of a course of 
study. But if this is the case why do so many people seem 
to think that Physics is really hard?

I think the main reason is that there are no ‘safety nets’ 
or ‘short cuts’ to understanding Physics principles. You 
won’t get far if you just learn laws by memorising them 
and try to plug numbers into equations in the hope of 
getting the right answer. To really make progress you need 
to be familiar with a concept and be completely happy 
that you understand it. This will mean that you are able 
to apply your understanding in unfamiliar situations. The 
hardest thing, however, is often not the learning or the 
understanding of new ideas but the getting rid of wrong 
and confused ‘every day explanations’. 

This book should prove useful to anyone following a pre-
university Physics course but its structure sticks very 

closely to the recently revised International Baccalaureate 
syllabus. It aims to provide an explanation (albeit very 
brief) of all of the core ideas that are needed throughout 
the whole IB Physics course. To this end each of the 
sections is clearly marked as either being appropriate 
for everybody or only being needed by those studying at 
Higher level. The same is true of the questions that can be 
found at the end of the chapters.

I would like to take the opportunity to thank the many 
people that have helped and encouraged me during the 
writing of this book. In particular I need to mention David 
Jones and Paul Ruth who provided many useful and 
detailed suggestions for improvement – unfortunately 
there was not enough space to include everything. The 
biggest thanks, however, need to go to Betsan for her 
support, patience and encouragement throughout the 
whole project.

Tim Kirk

October 2002

Third edition
Since the IB Study Guide's rst publication in 2002, there 
have been two signicant IB Diploma syllabus changes. 
The aim, to try and explain all the core ideas essential for 
the IB Physics course in as concise a way as possible, 
has remained the same.  I continue to be grateful to all the 
teachers and students who have taken time to comment 
and I would welcome further feedback.  In addition to 
the team at OUP, I would particularly like to thank my 
exceptional colleagues and all the outstanding students 
at my current school, St. Dunstan's College, London.  It 
goes without saying that this third edition could not have 
been achieved without Betsan's continued support and 
encouragement.  

This book is dedicated to the memory of my father,  
Francis Kirk.

Tim Kirk

August 2014



iv c o n t e n t s

Contents

(Italics denote topics which are exclusively Higher Level)

1 measurement and uncertaIntIes
The realm of physics – range of magnitudes of  
quantities in our universe 1

The SI system of fundamental and derived units 2

Estimation 3

Uncertainties and error in experimental measurement 4

Uncertainties in calculated results 5

Uncertainties in graphs 6

Vectors and scalars 7

IB Questions – measurement and uncertainties 8

2 mechanIcs
Motion 9

Graphical representation of motion 10

Uniformly accelerated motion 11

Projectile motion 12

Fluid resistance and free-fall 13

Forces and free-body diagrams 14

Newton’s rst law 15

Equilibrium 16

Newton’s second law 17

Newton’s third law 18

Mass and weight 19

Solid friction 20

Work 21

Energy and power 22

Momentum and impulse 23

IB Questions – mechanics 24

3 thermal PhYsIcs
Thermal concepts 25

Heat and internal energy 26

Specic heat capacity 27

Phases (states) of matter and latent heat 28

The gas laws 1 29

The gas laws 2 30

Molecular model of an ideal gas 31

IB Questions – thermal physics 32

4 waVes
Oscillations 33

Graphs of simple harmonic motion 34

Travelling waves 35

Wave characteristics 36

Electromagnetic spectrum 37

Investigating speed of sound experimentally 38

Intensity 39

Superposition 40

Polarization 41

Uses of polarization 42

Wave behaviour – Reection 43

Snell’s law and refractive index 44

Refraction and critical angle 45

Diraction 46

Two-source interference of waves 47

Nature and production of standing (stationary)  
waves 48

Boundary conditions 49

IB Questions – waves 50

5 electrIcItY and magnetIsm
Electric charge and Coulomb's law 51

Electric elds 52

Electric potential energy and electric potential  
dierence 53

Electric current 54

Electric circuits 55

Resistors in series and parallel 56

Potential divider circuits and sensors 57

Resistivity 58

Example of use of Kircho's laws 59

Internal resistance and cells 60

Magnetic force and elds 61

Magnetic forces 62

Examples of the magnetic eld due to currents 63

IB Questions – electricity and magnetism 64

6 cIrcular motIon and graVItatIon
Uniform circular motion 65

Angular velocity and vertical circular motion 66

Newton’s law of gravitation 67

IB Questions – circular motion and gravitation 68

7 atomIc, nuclear and  

PartIcle PhYsIcs
Emission and absorption spectra 69

Nuclear stability 70

Fundamental forces 71

Radioactivity 1 72

Radioactivity 2 73

Half-life 74

Nuclear reactions 75



vc o n t e n t s

Fission and fusion 76

Structure of matter 77

Description and classication of particles 78

Quarks 79

Feynman diagrams 80

IB Questions – atomic, nuclear and particle physics 81

8 energY ProductIon

Energy and power generation – Sankey diagram 82

Primary energy sources 83

Fossil fuel power production 84

Nuclear power – process 85

Nuclear power – safety and risks 86

Solar power and hydroelectric power 87

Wind power and other technologies 88

Thermal energy transfer 89

Radiation: Wien’s law and the Stefan–Boltzmann law 90

Solar power 91

The greenhouse eect 92

Global warming 93

IB Questions – energy production 94

9 WavE phEnomEna
Sie ri ti 95

Eergy ges drig sie ri ti 96

Dirti 97

Tw-sre itereree  wes:  
Yg’s dbe-sit exeriet 98

mtie-sit dirti 99

Ti re s 100

Resti 101

Te Der eet 102

xes d itis  te Der eet 103

IB Qestis – we ee 104

10 fIElDS
pteti (gritti d eetri) 105

Eqitetis 106

Gritti teti eergy d teti 107

orbit ti 108

Eetri teti eergy d teti 109

Eetri d Gritti fieds red 110

IB Qestis – eds 111

11 ElEcTRomaGnETIc InDucTIon
Induced electromotive force (emf) 112

lez's w d frdy's w 113

atertig rret (1) 114

atertig rret (2) 115

Retiti d stig irits 116

cite 117

citr disrge 118

citr rge 119

IB Qestis – eetrgeti idti 120

12 QuanTum anD nuclEaR phYSIcS
pteetri eet 121

mtter wes 122

ati setr d ti eergy sttes 123

Br de  te t 124

Te Srödiger de  te t 125

Te heiseberg ertity riie d  
te ss  deteriis 126

Teig, teti brrier d trs etig  
teig rbbiity 127

Te es 128

ner eergy ees d rditie dey 129

IB Qestis – qt d er ysis 130

13 oPtIon a – relatIVItY

Reference frames 131

Maxwell’s equations 132

Special relativity 133

Lorentz transformations 134

Velocity addition 135

Invariant quantities 136

Time dilation 137

Length contraction and evidence to support  
special relativity 138

Spacetime diagrams (Minkowski diagrams) 1 139

Spacetime diagrams 2 140

The twin paradox 1 140

Twin paradox 2 141

Spacetime diagrams 3 142

mss d eergy 143

Retiisti et d eergy 144

Retiisti eis exes 145

Geer retiity – te eqiee riie 146

Gritti red sit 147

Srtig eidee 148

crtre  setie 149

Bk es 150

IB Questions – option A – relativity 151

14 oPtIon B – engIneerIng PhYsIcs

Translational and rotational motion 152

Translational and rotational relationships 153

Translational and rotational equilibrium 154

Equilibrium examples 155

Newton’s second law – moment of inertia 156

Rotational dynamics 157



vi c o n t e n t s

Solving rotational problems 158

Thermodynamic systems and concepts 159

Work done by an ideal gas 160

The rst law of thermodynamics 161

Second law of thermodynamics and entropy 162

Heat engines and heat pumps 163

fids t rest 164

fids i ti – Beri eet 165

Beri – exes 166

vissity 167

fred sitis d rese (1) 168

Rese (2) 169

IB Questions – option B – engineering physics 170

15 oPtIon c – ImagIng

Image formation 171

Converging lenses 172

Image formation in convex lenses 173

Thin lens equation 174

Diverging lenses 175

Converging and diverging mirrors 176

The simple magnifying glass 177

Aberrations 178

The compound microscope and  
astronomical telescope 179

Astronomical reecting telescopes 180

Radio telescopes 181

Fibre optics 182

Dispersion, attenuation and noise in optical bres 183

Channels of communication 184

X-rys 185

X-ry igig teiqes 186

utrsi igig 187

Igig tied 188

IB Questions – option C – imaging 189

16 oPtIon d – astroPhYsIcs

Objects in the universe (1) 190

Objects in the universe (2) 191

The nature of stars 192

Stellar parallax 193

Luminosity 194

Stellar spectra 195

Nucleosynthesis 196

The Hertzsprung–Russell diagram 197

Cepheid variables 198

Red giant stars 199

Stellar evolution 200

The Big Bang model 201

Galactic motion 202

Hubble’s law and cosmic scale factor 203

The accelerating universe 204

ner si – te Jes riteri 205

nesytesis  te i seqee 206

Tyes  sere 207

Te sgi riie d teti des 208

Rtti res d drk tter 209

Te istry  te uierse 210

Te tre  te uierse 211

Drk eergy 212

astrysis reser 213

IB Questions – astrophysics 214

17 aPPendIX 

Graphs 215

Graphical analysis and determination of relationships 216

Gri ysis – griti tis 217

ANSWERS 218

ORIGIN OF INDIVIDUAL QUESTIONS 218

INDEX 219



1

1 M E A S U R E M E N T  A N D  U N C E R T A I N T I E S

Te ream o psics – rane o manitudes o 
quantities in our unierse

ORDERS Of MAgNITUDE – 

INClUDINg ThEIR RATIOS
Physics seeks to explain nothing less than the 

Universe itself. In attempting to do this, the 

range of the magnitudes of various quantities 

will be huge.

If the numbers involved are going to mean 

anything, it is important to get some feel 

for their relative sizes. To avoid ‘getting lost’ 

among the numbers it is helpful to state them 

to the nearest order of magnitude or power 

of ten. The numbers are just rounded up or 

down as appropriate.

Comparisons can then be easily made because 

working out the ratio between two powers of 

ten is just a matter of adding or subtracting 

whole numbers. The diameter of an atom, 

10 10 m, does not sound that much larger 

than the diameter of a proton in its nucleus, 

10 15 m, but the ratio between them is 105 or 

100,000 times bigger. This is the same ratio as 

between the size of a railway station (order 

of magnitude 102 m) and the diameter of the 

Earth (order of magnitude 107 m).

electrons

protons

Carbon atom

railway

station

Earth

For example, you would probably feel very 

pleased with yourself if you designed a new, 

environmentally friendly source of energy 

that could produce 2.03 × 103 J from 0.72 kg 

of natural produce. But the meaning of these 

numbers is not clear – is this a lot or is it a 

little? In terms of orders of magnitudes, this 

new source produces 103 joules per kilogram 

of produce. This does not compare terribly 

well with the 105 joules provided by a slice of 

bread or the 108 joules released per kilogram 

of petrol.

You do NOT need to memorize all of the 

values shown in the tables, but you should 

try and develop a familiarity with them. 

RANgE Of MASSES
Mass / kg

1052

1048

1044

1040

1036

1032

1028

1024

1020

1016

1012

108

104

100

10 4

10 8

10 16

10 12

10 20

10 24

10 28

10 32

total mass of observable 
Universe

mass of local galaxy 
(Milky Way)

mass of Sun

mass of Earth

total mass of oceans
total mass of atmosphere

laden oil supertanker

elephant
human

mouse

grain of sand
blood corpuscle

bacterium

haemoglobin molecule
proton

electron

RANgE Of TIMES
Time / s

1018

1020

1016

1014

1012

1010

108

106

104

102

100

10 2

10 4

10 6

10 8

10 10

10 12

10 16

10 14

10 18

10 20

10 22

10 24

age of the Universe

age of the Earth

age of species – Homo 
sapiens

typical human lifespan

1 year

1 day

heartbeat

period of high-frequency 
sound

passage of light across 
a room

vibration of an ion in a solid

period of visible light

passage of light across 
an atom

passage of light across 
a nucleus

RANgE Of lENgThS
Size / m

1026

1024

1022

1020

1018

1016

1014

1012

1010

108

106

104

102

100

10 2

10 4

10 8

10 6

10 10

10 12

10 14

10 16

radius of observable Universe

radius of local galaxy (Mily ay

disance o neares sar

disance from ar o Sun

disance from ar o Moon

radius of e ar
deees ar of e
ocean / iges mounain
alles building

leng of ngernail
icness of iece of aer
uman blood coruscle

aveleng of lig

diameer of ydrogen aom

aveleng of gamma ray

diameer of roon

RANgE Of ENERgIES

Energy / J

1034

1044

1030

1026

1022

1018

1014

1010

106

102

10 2

10 6

10 10

10 18

10 14

10 22

10 26

energy radiated by Sun in 1 second

energy released in a supernova

energy released by annihilation of
1 g of atter

energy released in an earthuae

energy in a lightning discharge

energy needed to charge a car
battery

energy in the beat of a y’s ing

inetic energy of a tennis ball
during gae

energy needed to reove electron 
fro the surface of a etal

M E A S U R E M E N T  A N D  U N C E R TA I N T I E S



2 M E A S U R E M E N T  A N D  U N C E R TA I N T I E S

DERIvED UNITS
Having xed the fundamental units, all other measurements 

can be expressed as different combinations of the fundamental 

units. In other words, all the other units are derived units. For 

example, the fundamental list of units does not contain a unit 

for the measurement of speed. The denition of speed can be 

used to work out the derived unit. 

Since speed =
distance_

time

Units of speed =
units of distance__

units of time

=
metres_
seconds

 (pronounced ‘metres per second’)

=
m_
s

= m s 1

Of the many ways of writing this unit, the last way (m s 1) is the 

best. 

Sometimes particular combinations of fundamental units 

are so common that they are given a new derived name. For 

example, the unit of force is a derived unit – it turns out to be 

kg m s 2. This unit is given a new name the newton (N) so that 

1N = 1 kg m s 2. 

The great thing about SI is that, so long as the numbers that are 

substituted into an equation are in SI units, then the answer 

will also come out in SI units. You can always ‘play safe’ by 

converting all the numbers into proper SI units. Sometimes, 

however, this would be a waste of time.

There are some situations where the use of SI becomes 

awkward. In astronomy, for example, the distances involved 

are so large that the SI unit (the metre) always involves large 

orders of magnitudes. In these cases, the use of a different 

(but non SI) unit is very common. Astronomers can use the 

astronomical unit (AU), the light-year (ly) or the parsec (pc) 

as appropriate. Whatever the unit, the conversion to SI units is 

simple arithmetic.

1 AU = 1.5 × 1011 m

1 ly = 9.5 × 1015 m

1 pc = 3.1 × 1016 m

There are also some units (for example the hour) which are so 

common that they are often used even though they do not form 

part of SI. Once again, before these numbers are substituted 

into equations they need to be converted. Some common unit 

conversions are given on page 3 of the IB data booklet.

The table below lists the SI derived units that you will meet.

SI derived unit SI base unit Alternative SI unit

newton (N) kg m s 2

pascal (Pa) kg m 1 s 2 N m 2

hertz (Hz) s 1

joule (J) kg m2 s 2 N m 

watt (W) kg m2 s 3 J s 1

coulomb (C) A s 

volt (V) kg m2 s 3 A 1 WA 1

ohm (Ω) kg m2 s 3 A 2 VA 1

weber (Wb) kg m2 s 2 A 1 V s

tesla (T) kg s 2 A 1 Wb m 2

becquerel (Bq) s 1

PREfIxES
To avoid the repeated use of scientic notation, an alternative is to use one of the list of agreed prexes given on page 2 in the IB data 

booklet. These can be very useful but they can also lead to errors in calculations. It is very easy to forget to include the conversion factor.

For example, 1 kW = 1000 W. 1 mW = 10 3 W (in other words, 1W____
1000

)

Te SI sstem o undamenta and deried units

fUNDAMENTAl UNITS
Any measurement and every quantity can be thought of as 

being made up of two important parts:

1. the number and 

2. the units.

Without both parts, the measurement does not make sense. 

For example a person’s age might be quoted as ‘seventeen’ 

but without the ‘years’ the situation is not clear. Are they 

17 minutes, 17 months or 17 years old? In this case you would 

know if you saw them, but a statement like 

length = 4.2 

actually says nothing. Having said this, it is really surprising to 

see the number of candidates who forget to include the units in 

their answers to examination questions.

In order for the units to be understood, they need to be dened. 

There are many possible systems of measurement that have 

been developed. In science we use the International System of 

units (SI). In SI, the fundamental or base units are as follows

Quantity SI unit SI symbol

Mass kilogram kg

Length metre m

Time second s

Electric current ampere A

Amount of substance mole mol

Temperature kelvin K

(Luminous intensity    candela    cd)

You do not need to know the precise denitions of any of these 

units in order to use them properly.
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Estimation

ORDERS Of MAgNITUDE

It is important to develop a ‘feeling’ for some of the numbers 

that you use. When using a calculator, it is very easy to make 

a simple mistake (eg by entering the data incorrectly). A good 

way of checking the answer is to rst make an estimate before 

resorting to the calculator. The multiple-choice paper (paper 1) 

does not allow the use of calculators.

Approximate values for each of the fundamental SI units are 

given below.

1 kg A packet of sugar, 1 litre of water. A person would be 

about 50 kg or more

1 m Distance between one’s hands with arms outstretched

1 s Duration of a heart beat (when resting – it can easily 

double with exercise)

1 amp Current owing from the mains electricity when a 

computer is connected. The maximum current to a 

domestic device would be about 10 A or so

1 kelvin 1K is a very low temperature. Water freezes at 273 K 

and boils at 373 K. Room temperature is about 300 K

1 mol 12 g of carbon 12. About the number of atoms of 

carbon in the ‘lead’ of a pencil

The same process can happen with some of the derived units.

1 m s 1 Walking speed. A car moving at 30 m s 1 would be fast 

1 m s 2 Quite a slow acceleration. The acceleration of gravity 

is 10 m s 2

1 N A small force – about the weight of an apple 

1 V Batteries generally range from a few volts up to 20 or 

so, the mains is several hundred volts 

1 Pa A very small pressure. Atmospheric pressure is about 

105 Pa

1 J A very small amount of energy – the work done 

lifting an apple off the ground 

POSSIblE REASONAblE ASSUMPTIONS

Everyday situations are very complex. In physics we often simplify a problem by making simple assumptions. Even if we know 

these assumptions are not absolutely true they allow us to gain an understanding of what is going on. At the end of the calculation 

it is often possible to go back and work out what would happen if our assumption turned out not to be true.

The table below lists some common assumptions. Be careful not to assume too much! Additionally we often have to assume that 

some quantity is constant even if we know that in reality it is varying slightly all the time. 

Assumption Example 

Object treated as point particle Mechanics: Linear motion and translational equilibrium

Friction is negligible Many mechanics situations – but you need to be very careful

No thermal energy (“heat”) loss Almost all thermal situations 

Mass of connecting string, etc. is negligible Many mechanics situations 

Resistance of ammeter is zero Circuits 

Resistance of voltmeter is innite Circuits 

Internal resistance of battery is zero Circuits 

Material obeys Ohm’s law Circuits 

Machine 100% efcient Many situations 

Gas is ideal Thermodynamics 

Collision is elastic Only gas molecules have perfectly elastic collisions

Object radiates as a perfect black body Thermal equilibrium, e.g. planets

SCIENTIfIC NOTATION

Numbers that are too big or too small for decimals are often 

written in scientic notation:

a × 10b

where a is a number between 1 and 10 and b is an integer.

e.g. 153.2 = 1.532 × 102; 0.00872 = 8.72 × 10 3

SIgNIfICANT fIgURES

Any experimental measurement should be quoted with its 

uncertainty. This indicates the possible range of values for 

the quantity being measured. At the same time, the number 

of signicant gures used will act as a guide to the amount 

of uncertainty. For example, a measurement of mass which 

is quoted as 23.456 g implies an uncertainty of ± 0.001 g 

(it has ve signicant gures), whereas one of 23.5 g implies 

an uncertainty of ± 0.1 g (it has three signicant gures).

A simple rule for calculations (multiplication or division) is to 

quote the answer to the same number of signicant digits as 

the LEAST precise value that is used.

For a more complete analysis of how to deal with uncertainties 

in calculated results, see page 5.
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Uncertainties and error in eperimenta measurement

ERRORS – RANDOM AND SySTEMATIC (PRECISION
AND ACCURACy)
An experimental error just means that there is a difference 

between the recorded value and the ‘perfect’ or ‘correct’ value. 

Errors can be categorized as random or systematic. 

Repeating readings does not reduce systematic errors.

Sources of random errors include

• The readability of the instrument.

• The observer being less than perfect.

• The effects of a change in the surroundings.

Sources of systematic errors include

• An instrument with zero error. To correct for zero error the 

value should be subtracted from every reading.

• An instrument being wrongly calibrated

• The observer being less than perfect in the same way every 

measurement.

An accurate experiment is one that has a small systematic 

error, whereas a precise experiment is one that has a small 

random error. 

value
measured 
value

measured
value

(a) (b)
value value

probability
that result has a

certain value

Two examples illustrating the nature of experimental results: 

(a) an accurate experiment of low precision 

(b) a less accurate but more precise experiment.

Systematic and random errors can often be recognized from a 

graph of the results.

q
u

a
n

ti
ty

 A

quantity B

perfect results
random error
systematic error

Perfect results, random and systematic errors of two 

proportional quantities.

SIgNIfICANT fIgURES IN UNCERTAINTIES
In order to be cautious when quoting uncertainties, nal values 

from calculations are often rounded up to one signicant 

gure, e.g. a calculation that nds the value of a force to 

be 4.264 N with an uncertainty of ± 0.362 N is quoted as 

4.3 ± 0.4 N. This can be unnecessarily pessimistic and it is also 

acceptable to express uncertainties to two signicant gures. 

For example, the charge on an electron is 1.602176565 ×10 19 C

± 0.000000035 ×10 19 C. In data booklets this is sometimes 

expressed as 1.602176565(35) × 10 19 C.

gRAPhICAl REPRESENTATION Of UNCERTAINTy
In many situations the best method of presenting and 

analysing data is to use a graph. If this is the case, a neat way 

of representing the uncertainties is to use error bars. The 

graphs below explains their use.

Since the error bar represents the uncertainty range, the ‘best-

t’ line of the graph should pass through ALL of the rectangles 

created by the error bars.
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ty

 A

quantity B

q
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ty

 C

quantity D

The best t line is 

included by all the error 

bars in the upper two 

graphs. This is not true in 

the lower graph.
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 E

quantity F

mistake

assumed

ESTIMATINg ThE UNCERTAINTy RANgE
An uncertainty range applies to any 

experimental value. The idea is that, 

instead of just giving one value that 

implies perfection, we give the likely 

range for the measurement. 

1. Estimating from rst principles

All measurement involves a readability 

error. If we use a measuring cylinder to 

nd the volume of a liquid, we might 

think that the best estimate is 73 cm3, 

but we know that it is not exactly this 

value (73.00000000000 cm3).

Uncertainty range is ± 5 cm3. We say 

volume = 73 ± 5 cm3. 

Normally the uncertainty range due to 

readability is estimated as below. 

Device Example Uncertainty 

Analogue 

scale

Rulers, meters with 

moving pointers

± (half the smallest  

scale division)

Digital scale Top-pan balances,  

digital meters

± (the smallest scale  

division)

2. Estimating uncertainty range from several repeated 

measurements

If the time taken for a trolley to go down a slope is measured ve 

times, the readings in seconds might be 2.01, 1.82, 1.97, 2.16 and 

1.94. The average of these ve readings is 1.98 s. The deviation of 

the largest and smallest readings can be calculated (2.16  1.98 

= 0.18; 1.98  1.82 = 0.16). The largest value is taken as the 

uncertainty range. In this example the time is 1.98 s ± 0.18 s. It 

would also be appropriate to quote this as 2.0 ± 0.2 s.

100
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20

30

40

50

60

70

90

80

cm
3
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Uncertainties in cacuated resuts

MAThEMATICAl REPRESENTATION Of UNCERTAINTIES
For example if the mass of a block was measured as 10 ± 1 g 

and the volume was measured as 5.0 ± 0.2 cm3, then the full 

calculations for the density would be as follows.

Best value for density = mass______
volume

= 10
5

= 2.0 g cm 3

The largest possible value of density = 11___
4.8

= 2.292 g cm 3

The smallest possible value of density = 9___
5.2

= 1.731 g cm 3

Rounding these values gives density = 2.0 ± 0.3 g cm 3

We can express this uncertainty in one of three ways – using 

absolute  fractional or percentage uncertainties

If a quantity p is measured then the absolute uncertainty would 

be expressed as ±∆p

Then the fractional uncertainty is

±∆p_
p , 

which makes the percentage uncertainty

±∆p_
p × 100%.

In the example above, the fractional uncertainty of the density is 

±0.15 or ±15%. 

Thus equivalent ways of expressing this error are 

density = 2.0 ± 0.3 g cm 3

OR density = 2.0 g cm 3 ± 15%

Working out the uncertainty range is very time consuming. 

There are some mathematical ‘short-cuts’ that can be used. 

These are introduced in the boxes below.

MUlTIPlICATION, DIvISION OR POwERS
Whenever two or more quantities are multiplied or divided 

and they each have uncertainties, the overall uncertainty 

is approximately equal to the addition of the percentage

(fractional) uncertainties.

Using the same numbers from above,

∆m = ± 1 g

∆m_
m = ± ( 1 g_

10 g ) = ± 0.1 = ± 10%

∆V = ± 0.2 cm3

∆V_
V

= ± (0.2 cm3
_
5 cm3 ) = ± 0.04 = ± 4%

The total % uncertainty in the result = ± (10 + 4)%  

= ± 14 % 

14% of 2.0 g cm 3 = 0.28 g cm 3 ≈ 0.3 g cm 3

So density = 2.0 ± 0.3 g cm 3 as before.

In symbols, if y = ab_c

Then 
∆y_
y = ∆a_

a + ∆b_
b

+ ∆c_
c [note this is ALWAYS added] 

Power relationships are just a special case of this law.

If y = an

Then 
∆y

y = |n ∆a_
a | (always positive)

For example if a cube is measured to be 4.0 ± 0.1 cm in length 

along each side, then

% Uncertainty in length = ± 0.1_
4.0

= ± 2.5 %

Volume = (length)3 = (4.0)3 = 64 cm3

% Uncertainty in [volume] = % uncertainty in [(length)3]  

= 3 × (% uncertainty in [length])

= 3 × (± 2.5 %)  

= ± 7.5 %

Absolute uncertainty = 7.5% of 64 cm3

= 4.8 cm3 ≈ 5 cm3

Thus volume of cube = 64 ± 5 cm3

OThER MAThEMATICAl OPERATIONS
If the calculation involves mathematical operations other than 

multiplication, division or raising to a power, then one has to 

nd the highest and lowest possible values.

Addition or sutraction 

Whenever two or more quantities are added or subtracted and 

they each have uncertainties, the overall uncertainty is equal to 

the addition of the absolute uncertainties.

In symbols

If y = a ± b

∆y = ∆a + ∆b (note ALWAYS added)

uncertainty of thickness in a pipe wall

external radius of pipe 

= 6.1cm ± 0.1cm (≃ 2%)

internal radius of pipe 

= 5.3cm ± 0.1cm (≃ 2%)

thickness of pipe wall = 6.1  5.3cm

= 0.8cm

uncertainty in thickness = ±(0.1 + 0.1)cm

= 0.2cm 

= ±25%

Oter unctions

There are no ‘short-cuts’ possible. Find the highest and lowest 

values.

e.g. uncertainty of sin θ if θ = 60° ± 5°

s
in

 θ

0.82

0.87

0.91

1

55 60 65 θ

if θ = 60° ± 5°

best value to sin θ = 0.87

max. sin θ = 0.91

min. sin θ = 0.82

∴ sin θ = 0.87 ± 0.05

worst value used
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Uncertainties in raps

ERROR bARS
Plotting a graph allows one to visualize all the readings at 

one time. Ideally all of the points should be plotted with 

their error bars. In principle, the size of the error bar could 

well be different for every single point and so they should be 

individually worked out. 

A full analysis in order to determine the uncertainties in the 

gradient of a best straight-line graph should always make 

use of the error bars for all of the data points.

In practice, it would often take too much time to add all the 

correct error bars, so some (or all) of the following short-cuts 

could be considered.

• Rather than working out error bars for each point – use the 

worst value and assume that all of the other error bars are 

the same.

• Only plot the error bar for the ‘worst’ point, i.e. the point 

that is furthest from the line of best t. If the line of best t 

is within the limits of this error bar, then it will probably be 

within the limits of all the error bars.

• Only plot the error bars for the rst and the last points. 

These are often the most important points when 

considering the uncertainty ranges calculated for the 

gradient or the intercept (see right).

• Only include the error bars for the axis that has the worst 

uncertainty. 

UNCERTAINTy IN INTERCEPTS
If the intercept of the graph has been used to calculate a 

quantity, then the uncertainties of the points will give rise 

to an uncertainty in the intercept. Using the steepest and the 

shallowest lines possible (i.e. the lines that are still consistent 

with the error bars) we can obtain the uncertainty in the 

result. This process is represented below.

q
u

a
n

ti
ty

a

quantity b

maximum value 

of intercept

minimum value

of intercept

best value

for intercept

UNCERTAINTy IN SlOPES
If the gradient of the graph has been used to calculate a 

quantity, then the uncertainties of the points will give rise 

to an uncertainty in the gradient. Using the steepest and the 

shallowest lines possible (i.e. the lines that are still consistent 

with the error bars) the uncertainty range for the gradient is 

obtained. This process is represented below.

shallowest 

gradient
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steepest gradient

best t line
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quantity b
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vectors and scaars

DIffERENCE bETwEEN vECTORS AND SCAlARS

If you measure any quantity, it must have a number AND a 

unit. Together they express the magnitude of the quantity. 

Some quantities also have a direction associated with them. A 

quantity that has magnitude and direction is called a vector

quantity whereas one that has only magnitude is called a 

scalar quantity. For example, all forces are vectors. 

The table lists some common quantities. The rst two quantities 

in the table are linked to one another by their denitions (see 

page 9). All the others are in no particular order.

Vectors Scalars

Displacement  Distance

Velocity  Speed

Acceleration Mass

Force Energy (all forms)

Momentum Temperature

Electric eld strength Potential or potential 

difference

Magnetic eld strength Density

Gravitational eld strength Area 

Although the vectors used in many of the given examples are 

forces, the techniques can be applied to all vectors. 

REPRESENTINg vECTORS

In most books a bold letter is used to represent a vector 

whereas a normal letter represents a scalar. For example F

would be used to represent a force in magnitude AND 

direction. The list below shows some other recognized methods.

F , F or  F

Vectors are best shown in 

diagrams using arrows:

• the relative magnitudes 

of the vectors involved 

are shown by the relative 

length of the arrows

• the direction of the 

vectors is shown by the 

direction of the arrows.
weight

normal
reaction

pull

friction

ADDITION / SUbTRACTION Of vECTORS

If we have a 3 N and a 4 N force, the overall force (resultant 

force) can be 

anything between 

1 N and 7 N 

depending on 

the directions 

involved.

The way to take 

the directions 

into account 

is to do a scale 

diagram and use 

the parallelogram 

law of vectors. 

This process is the same as 

adding vectors in turn – the 

‘tail’ of one vector is drawn 

starting from the head of 

the previous vector.

=

=

=

=

3 N

4 N

4 N

3 N

7 N

5 N

4 N

3 N 3 N

3 N 4 N
1 N

COMPONENTS Of vECTORS

It is also possible to ‘split’ one vector into two (or more) vectors. 

This process is called resolving and the vectors that we get are 

called the components of the original vector. This can be a very 

useful way of analysing a situation if we choose to resolve all the 

vectors into two directions that are at right angles to one another. 

F F
vertical

F
horizontal

F

Splitting a vector into components

These ‘mutually perpendicular’ directions are totally 

independent of each other and can be analysed separately. If 

appropriate, both directions can then be combined at the end 

to work out the nal resultant vector.

forces

components

Push

Surface

force

Weight

W

PV

PH
SH

SV

Pushing a block along a rough surface

TRIgONOMETRy

Vector problems can always be solved using scale diagrams, 

but this can be very time consuming. The mathematics 

of trigonometry often makes it much easier to use the 

mathematical functions of sine or cosine. This is particularly 

appropriate when resolving. The diagram below shows how to 

calculate the values of either of these components. 

A
v
=

A
s

in
 θ

Av

A

AH

AH= Acos θ

θ

See page 14 for an example.

a

b

a + b

Parallelogram of vectors
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3. A stone is dropped down a well and hits the water 2.0 s after 

it is released. Using the equation d = 1
2
g t2 and taking  

g = 9.81 m s 2, a calculator yields a value for the depth d of 

the well as 19.62 m. If the time is measured to ±0.1 s then 

the best estimate of the absolute error in d is

A. ±0.1 m C. ±1.0 m

B. ±0.2 m D. ±2.0 m

4. In order to determine the density of a certain type of wood, 

the following measurements were made on a cube of the 

wood.

Mass = 493 g

Length of each side = 9.3 cm

The percentage uncertainty in the measurement of mass is 

±0.5% and the percentage uncertainty in the measurement 

of length is ±1.0%.

The best estimate for the uncertainty in the density is

A. ±0.5% C. ±3.0%

B. ±1.5% D. ±3.5%

5. Astronauts wish to determine the gravitational acceleration 

on Planet X by dropping stones from an overhanging cliff. 

Using a steel tape measure they measure the height of the 

cliff as s = 7.64 m ± 0.01 m. They then drop three similar 

stones from the cliff, timing each fall using a hand-held 

electronic stopwatch which displays readings to one-

hundredth of a second. The recorded times for three drops are 

2.46 s, 2.31 s and 2.40 s.

a) Explain why the time readings vary by more  

than a tenth of a second, although the stopwatch  

gives readings to one hundredth of a second. [1]

b) Obtain the average time t to fall, and write it in  

the form (value ± uncertainty), to the appropriate  

number of signicant digits. [1]

c) The astronauts then determine the gravitational 

acceleration a
g
 on the planet using the formula a

g
=

2s

t2
. 

Calculate a
g
 from the values of s and t, and determine the 

uncertainty in the calculated value. Express the result in 

the form  

a
g
= (value ± uncertainty),  

to the appropriate number of signicant digits. [3]

HL

6. This question is about nding the relationship between the 

forces between magnets and their separations.

In an experiment, two magnets were placed with their North-

seeking poles facing one another. The force of repulsion, f, 

and the separation of the magnets, d, were measured and the 

results are shown in the table below.

Separation d/m Force of repulsion f/N

0.04 4.00

0.05 1.98

0.07 0.74

0.09 0.32

a) Plot a graph of log (force) against log (distance). [3]

b) The law relating the force to the separation is  

of the form

f = kdn

(i) Use the graph to nd the value of n. [2]

(ii) Calculate a value for k, giving its units. [3]

1. An object is rolled from rest down an inclined plane. The 

distance travelled by the object was measured at seven different 

times. A graph was then constructed of the distance travelled 

against the (time taken)2 as shown below.

d
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0.0 0.1 0.2 0.3 0.4 0.5

a) (i) What quantity is given by the gradient of such  

a graph? [2]

(ii) Explain why the graph suggests that the collected 

data is valid but includes a systematic error. [2]

(iii) Do these results suggest that distance is proportional 

to (time taken)2? Explain your answer. [2]

(iv) Making allowance for the systematic error, calculate 

the acceleration of the object. [2]

b) The following graph shows that same data after the uncertainty 

ranges have been calculated and drawn as error bars.
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Add two lines to show the range of the possible 

acceptable values for the gradient of the graph. [2]

2. The lengths of the sides of a rectangular plate are measured, and 

the diagram shows the measured values with their uncertainties.

50 ± 0.5 mm

25 ± 0.5 mm

Which one of the following would be the best estimate of the 

percentage uncertainty in the calculated area of the plate?

A. ± 0.02% C. ± 3%

B. ± 1% D. ± 5%

Ib Questions – measurement and uncertainties
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2 m e c h a n i c s

Definitions

These technical terms should not be confused with their ‘everyday’ use. In particular one should note that

• Vector quantities always have a direction associated with them.

• Generally, velocity and speed are NOT the same thing. This is particularly important if the object is not going in a straight line.

• The units of acceleration come from its denition. (m s 1) ÷ s = m s 2

• The denition of acceleration is precise. It is related to the change in velocity (not the same thing as the change in speed). 

Whenever the motion of an object changes, it is called acceleration. For this reason acceleration does not necessarily mean 

constantly increasing speed – it is possible to accelerate while at constant speed if the direction is changed.

• A deceleration means slowing down, i.e. negative acceleration if velocity is positive.

Symbol Denition Example SI 

Unit

Vector or 

scalar?

Displacement s The distance moved in a 

particular direction.

The displacement from London to 

Rome is 1.43 × 106 m southeast.

m Vector

Velocity v or u The rate of change of 

displacement.

velocity =
change of displacement________________

time taken

The average velocity during a ight 

from London to Rome is 160 m s 1

southeast.

m s 1 Vector

Speed v or u The rate of change of distance.

speed =
distance gone__________

time taken

The average speed during a ight 

from London to Rome is 160 m s 1

m s 1 Scalar

Acceleration a The rate of change of velocity.

acceleration =
change of velocity_____________

time taken

The average acceleration of a plane 

on the runway during take-off is 

3.5 m s 2 in a forwards direction. This 

means that on average, its velocity

changes every second by 3.5 m s 1

m s 2 Vector

instantaneous vs average

It should be noticed that the average value (over a period 

of time) is very different to the instantaneous value (at one 

particular time). 

In the example below, the positions of a sprinter are shown at 

different times after the start of a race.

The average speed over the whole race is easy to work out. It 

is the total distance (100 m) divided by the total time (11.3 s) 

giving 8.8 m s 1. 

But during the race, her instantaneous speed was changing all the 

time. At the end of the rst 2.0 seconds, she had travelled 10.04 m.

This means that her average speed over the rst 2.0 seconds was 

5.02 m s 1. During these rst two seconds, her instantaneous 

speed was increasing – she was accelerating. If she started at rest 

(speed = 0.00 m s 1) and her average speed (over the whole two 

seconds) was 5.02 m s 1 then her instantaneous speed at 2 seconds 

must be more than this. In fact the instantaneous speed for this 

sprinter was 9.23 m s 1, but it would not be possible to work this 

out from the information given.

start nish

d = 0.00 m d = 10.04 m d = 28.21 m d = 47.89 m d = 69.12 m d = 100.00 m

t = 0.0 s t = 2.0 s t = 4.0 s t = 6.0 s t = 8.0 s t = 11.3 s

m

frames of reference

If two things are moving in the same 

straight line but are travelling at different 

speeds, then we can work out their 

relative velocities by simple addition or 

subtraction as appropriate. For example, 

imagine two cars travelling along a 

straight road at different speeds. 

If one car (travelling at 30 m s 1) 

overtakes the other car (travelling at  

25 m s 1), then according to the driver of 

the slow car, the relative velocity of the 

fast car is +5 m s 1

In technical terms what we are doing is 

moving from one frame of reference

into another. The velocities of 25 m s 1

and 30 m s 1 were measured according

25 m s 1

30 m s 1

one car overtaking another, as seen by an 

observer on the side of the road.

to a stationary observer on the side of the 

road. We moved from this frame of reference 

into the driver’s frame of reference. 

gap between the cars 

increases

by 5 m s 1

one car overtaking another, as seen by the 

driver of the slow car.
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g   

the use of graphs
Graphs are very useful for representing the changes that 

happen when an object is in motion. There are three possible 

graphs that can provide useful information

• displacement–time or distance–time graphs

• velocity–time or speed–time graphs

• acceleration–time graphs.

There are two common methods of determining particular physical 

quantities from these graphs. The particular physical quantity 

determined depends on what is being plotted on the graph.

1. Finding the gradient of the line.

To be a little more precise, one could nd either the gradient of 

• a straight-line section of the graph (this nds an average 

value), or

• the tangent to the graph at one point (this nds an 

instantaneous value).

2. Finding the area under the line.

To make things simple at the beginning, the graphs are 

normally introduced by considering objects that are just moving 

in one particular direction. If this is the case then there is 

not much difference between the scalar versions (distance or 

speed) and the vector versions (displacement or velocity) as the 

directions are clear from the situation. More complicated graphs 

can look at the component of a velocity in a particular direction.

If the object moves forward then backward (or up then down), 

we distinguish the two velocities by choosing which direction to 

call positive. It does not matter which direction we choose, but 

it should be clearly labelled on the graph. 

Many examination candidates get the three types of graph 

muddled up. For example a speed–time graph might be 

interpreted as a distance–time graph or even an acceleration–

time graph. Always look at the axes of a graph very carefully. 

example of equation of uniform motion
A car accelerates uniformly from rest. After 8 s it has travelled 120 m. Calculate: (i) its average acceleration (ii) its instantaneous 

speed after 8 s

(i) s = ut +
1
2

at
2

∴ 120 = 0 × 8 +
1
2

a × 82
= 32 a

a = 3.75 m s–2

(ii) v
2
= u

2
+ 2 as

= 0 + 2 × 3.75 × 120 

= 900

   ∴ v = 30 m s–1

Displacement–time graphs
• The gradient of a displacement–time 

graph is the velocity

• The area under a displacement–time 

graph does not represent anything 

useful 

e

Object is thrown vertically upwards.

d
is

p
la

ce
m

e
n

t 
/ 

m

time / s

4.0

2.0

1.0 2.0

highest point at t= 0.9 s

object returns to

hand at t= 1.8 s

Object moves at constant speed, stops then returns.

d
is

p
la

ce
m

e
n

t 
/ 

m

time / s

20.0

10.0

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

rst 4 seconds
at constant
speed

speed =
20

= 5 m s 1

4

object stationary

for 3 seconds

speed = 0 m s 1

object returns at a 

faster speed

speed =
20
1

= 20 m s 1

level of
hand as zero
displacement

acceleration–time graphs
• The gradient of an acceleration–

time graph is not often useful (it 

is actually the rate of change of 

acceleration)

• The area under an acceleration–

time graph is the change in velocity

e

Object moves with increasing, then constant,
then decreasing acceleration.

change in velocity = area under graph
= -10.0 ×1.8 m s 1

= -18 m s 1

(change from +9.0 to 9.0 m s 1)

ac
ce

le
ra

ti
on

 / 
m

 s
2

time / s

+10.0

–10.0

1.0 2.0

Object is thrown vertically upwards.

ac
ce

le
ra

ti
on

 / 
m

 s
2

time / s

20.0

10.0

object at constant
acceleration of 20 m s 2

velocity still changing all
the time

acceleration is constantly
increasing, rate of change
of velocity is increasing

rate of
acceleration
is decreasing,
but velocity
continues
to increase

1
2
  × 4 × 20 = 40 m s 1Change in velocity =   

velocity–time graphs
• The gradient of a velocity–time 

graph is the acceleration

• The area under a velocity–time 

graph is the displacement 

e

ve
lo

ci
ty

 / 
m

 s
–

1

20.0

10.0

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Object moves with constant acceleration 
then constant velocity then ecelerates.

object at constant
see = 20 m s 1
acceleration is ero

istance travelle in rst 4 secons 
= area ner rah

=
1 

× 4 × 20 m = 40 m
   2

object is slowin
own acceleration

objects velocity is increasin

acceleration =

= 5 m s 2

20
4

ve
lo

ci
ty

 / 
m

 s
1

time / s

time / s

.0

.0

1.0 2.0

initial war
velocity is +ve

instantaneos
velocity = ero
at hihest oint
t = 0. s

ownwar
velocity is
neative

acceleration 10 m s 2.0
0.

ma. heiht = area ner rah
1
2

=     × 0. × .0 m = 4.05 m

Object is thrown vertically wars.

= -20 m s 2

20
1= -
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u d 

practical 

calculations
In order to determine how the 

velocity (or the acceleration) 

of an object varies in real 

situations, it is often necessary 

to record its motion. Possible 

laboratory methods include.

l 
A light gate is a device that 

senses when an object cuts 

through a beam of light. The 

time for which the beam is 

broken is recorded. If the 

length of the object that 

breaks the beam is known, 

the average speed of the 

object through the gate can 

be calculated. 

Alternatively, two light gates 

and a timer can be used to 

calculate the average velocity 

between the two gates. Several 

light gates and a computer can 

be joined together to make 

direct calculations of velocity 

or acceleration.

s 
A strobe light gives out very 

brief ashes of light at xed 

time intervals. If a camera 

is pointed at an object and 

the only source of light is 

the strobe light, then the 

developed picture will have 

captured an object’s motion.

t = 0.0 s

t = 0.1 s

t = 0.2 s

t = 0.3 s

t = 0.4 s

t = 0.5 s

t 
A ticker timer can be 

arranged to make dots on 

a strip of paper at regular 

intervals of time (typically 

every ftieth of a second). If 

the piece of paper is attached 

to an object, and the object 

is allowed to fall, the dots on 

the strip will have recorded 

the distance moved by the 

object in a known time.

equations of 

uniform motion
These equations can only be 

used when the acceleration 

is constant – don’t forget to 

check if this is the case!

The list of variables to 

be considered (and their 

symbols) is as follows

u initial velocity

v nal velocity

a acceleration (const)

t time taken

s distance travelled 

The following equations link 

these different quantities. 

v = u + at

s = ( u + v_
2 ) t

v
2 = u

2 + 2as

s = ut + 1
2

at
2

s = vt
1
2

at
2

The rst equation is derived 

from the denition of 

acceleration. In terms of 

these symbols, this denition 

would be 

a =
(v u)_

t

This can be rearranged to 

give the rst equation.

v = u + at (1)

The second equation comes 

from the denition of 

average velocity. 

average velocity = s

t

Since the velocity is changing 

uniformly we know that this 

average velocity must be 

given by 

average velocity =
(v + u)_

2

or
s

t
=

(u + v)_
2

This can be rearranged to 

give

s =
(u + v)t_

2
(2)

The other equations of 

motion can be derived by 

using these two equations 

and substituting for one of 

the variables (see previous 

page for an example of 

theiruse).

falling objects
A very important example of uniformly accelerated motion is 

the vertical motion of an object in a uniform gravitational 

eld. If we ignore the effects of air resistance, this is known as 

being in free-fall

Taking down as positive, the graphs of the motion of any object 

in free-fall are 

displacement / m

d
o

w
n

w
a

rd
s
+

ve
d

o
w

n
w

a
rd

s
+

ve

acceleration / m s 2

time / s

time / s

time / s

45

30

20

10

10

20

5

1.0 2.0 3.0

1.0 2.0 3.0

1.0 2.0 3.0

velocity / m s 1

d
o

w
n

w
a

rd
s
+

ve

In the absence of air resistance, all falling objects have the 

SAME acceleration of free-fall, INDEPENDENT of their mass.

Air resistance will (eventually) affect the motion of all 

objects. Typically, the graphs of a falling object affected by air 

resistance become the shapes shown below.

displacement / m

velocity / m s 1

acceleration / m s 2

time / s

time / s

time / s

d
o

w
n

w
a

rd
s
+

ve
d

o
w

n
w

a
rd

s
+

ve
d

o
w

n
w

a
rd

s
+

ve

20

5

20
23

10

1.0 2.0 3.0

1.0 2.0 3.0

1.0 2.0 3.0

straight line as

velocity becomes

constant

terminal

velocity of

23 m s 1

acceleration= zero

at terminal velocity

As the graphs show, the velocity does not keep on rising. It 

eventually reaches a maximum or terminal velocity. A 

piece of falling paper will reach its terminal velocity in a much 

shorter time than a falling book.
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components of projectile motion
If two children are throwing and catching a tennis ball between 

them, the path of the ball is always the same shape. This motion is 

known as projectile motion and the shape is called a parabola

path taken by ball

is a parabola

The only forces acting during its ight are gravity and friction. 

In many situations, air resistance can be ignored.

It is moving horizontally and vertically at the same time

but the horizontal and vertical components of the motion are 

independent of one another. Assuming the gravitional force is 

constant, this is always true.

hz 
There are no forces in the horizontal direction, so there is no 

horizontal acceleration. This means that the horizontal velocity 

must be constant.

ball travels at a constant horizontal velocity

v1

v2
v3 vH

vH

v5

v4vH
vH

vH

dH dH dH dH dH

vH

v6

v 
There is a constant vertical force acting down, so there is 

a constant vertical acceleration. The value of the vertical 

acceleration is 10 m s 2, which is the acceleration due to gravity.

v3 vH
vH

v4vH
vH

vH vH

vertical

changes

velocity
v1

v2

v5

v6

mathematics of parabolic motion
The graphs of the components of parabolic motion are shown below.

   x-d    y-d

t / s t / s

t / s t / s

t / s t / s

a
x 

/ 
m

 s
2

a
y

 /
 m

 s
2

v y
 /

 m
 s

1

v x
 /

 m
 s

1
x 

/ 
m

y
 /

 mslope = ux

g

slope = -g

uy

maximum

height

0

0

0

0

0

0

ux

Once the components have been worked out, the actual velocities (or 

displacements) at any time can be worked out by vector addition.

The solution of any problem involving projectile motion is as follows:

• use the angle of launch to resolve the initial velocity into components.

• the time of ight will be determined by the vertical component of 

velocity.

• the range will be determined by the horizontal component (and the 

time of ight).

• the velocity at any point can be found by vector addition.

Useful ‘short-cuts’ in calculations include the following facts:

• for a given speed, the greatest range is achieved if the launch angle is 45°.

• if two objects are released together, one with a horizontal velocity 

and one from rest, they will both hit the ground together.

p 

example
A projectile is launched horizontally from the top of 

a cliff.

vertical motion horizontal motion

u = 0

v = ?

a = 10 m s 2

s = h

t = ?

u = uH

v = uH

a = 0

s = x

t = ?

The final velocity vf is the vector addition of v and uH

s = ut + at
2

h = 0 + × 10 × t
2

so

t
2

=∴

t = s

v = u + atSince

v = 0 + 10

=
1

x = uH × t

= uH ×

1

2

1

2
2h

10

2h

10

2h

10
m

2h

10
m20h

initial horizontal velocity
uH

uH

vf

h

height

of cli

x

v
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fluiD resistance 

When an object moves through a uid (a liquid or a gas), there will be a frictional uid resistance that affects the object’s motion. 

An example of this effect is the terminal velocity that is reached by a free-falling object, e.g. a spherical mass falling through a liquid 

or a parachutist falling towards the Earth. See page 11 for how the motion graphs will be altered in these situations.

Modelling the precise effect of uid resistance on moving objects is complex but simple predictions are possible. The Engineering 

Physics option (see page 167) introduces a mathematical analysis of the frictional drag force that acts on a perfect sphere when it 

moves through a uid. Key points to note are that:

• Viscous drag acts to oppose motion through a uid

• The drag force is dependent on:

• Relative velocity of the object with respect to the uid

• The shape and size of the object (whether the object is aerodynamic or not)

• The uid used (and a property called its viscosity).

For example page 12 shows how, in the absence of uid resistance, an object that is in projectile motion will follow a parabolic 

path. When uid resistance is taken into account, the vertical and the horizontal components of velocity will both be reduced. The 

effect will be a reduced range and, in the extreme, the horizontal velocity can be reduced to near zero.

parabolic path (no uid resistance)

path (with uid resistance)

experiment to Determine free-fall acceleration

All experiments to determine the free-fall acceleration for an object are based on the use of a constant acceleration equation with 

recorded measurements of displacement and time. Some experimental set-ups will be more sophisticated and use more equipment 

than others. This increased use of technology potentially brings greater precision but can introduce more complications. Simple 

equipment often means that, with a limited time available for experimentation, it is easier for many repetitions to be attempted.

If an object free-falls a height, h, from rest in a time, t, the acceleration, g, can be calculated using s = ut + 1
2
at2 which rearranges 

to give = 2h

t2
. Rather than just calculating a single value, a more reliable value comes from taking a series of measurement of the 

different times of fall for different heights h =
1
2
gt2. A graph of h on the y-axis against t2 on the x-axis will give a straight line graph 

that goes through the origin with a gradient equal to 1
2
g, making g twice the gradient.

Possible set-ups include:

Set-up Comments

Direct measurement of a falling object, 

e.g. ball bearing with a stop watch and 

a metre ruler

Very simple set-up meaning many repetitions easily achieved so random error can be 

eliminated. If height of fall is carefully controlled, great precision is possible even though 

equipment is standard. For a simple everyday object such as a ball bearing, the effect of 

air resistance will be negligible in the laboratory whereas the effect of air resistance on a 

Ping-Pong ball will be signicant.

Electromagnet release and electronic 

timing version of the above

The increased precision of the timing can improve accuracy but set-up will take longer.  

Introduction of technology can mean that systematic errors are harder to identify.

Motion of falling object automatically 

recording on ticker-tape attached to 

falling object

Physical record allows detailed analysis of motion and thus allows the object’s whole 

fall to be considered (not just the overall time taken) and for the data to be graphically 

analysed. Addition of moving paper tape introduces friction to the motion, however.

Distance sensor and data logger All measurements can be automated and very precise. Software can be programmed 

to perform all the calculations and to plot appropriate graphs. Experimenter needs to 

understand how to operate the data logger and associated software.

Video analysis of falling object Capturing a visual record of the object’s fall against a known scale, allows detailed 

measurements to be taken. Timing information from the video recording needed, which 

often involves ICT.

fd  d -
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forces – what they are anD what they Do
In the examples below, a force (the kick) can cause deformation 

(the ball changes shape) or a change in motion (the ball 

gains a velocity). There are many different types of forces, 

but in general terms one can describe any force as ‘the cause 

of a deformation or a velocity change’. The SI unit for the 

measurement of forces is the newton (N).

kick

(a) deformation (b) change in velocity

kick
kick causes

deformation of football

kick causes a change in

motion of football

Effect of a force on a football

• A (resultant) force causes a CHANGE in velocity. If the 

(resultant) force is zero then the velocity is constant. 

Remember a change in velocity is called an acceleration, so we 

can say that a force causes an acceleration. A (resultant) 

force is NOT needed for a constant velocity (see page 16).

• The fact that a force can cause deformation is also important, 

but the deformation of the ball was, in fact, not caused by just 

one force – there was another one from the wall. 

• One force can act on only one object. To be absolutely 

precise the description of a force should include

• its magnitude

• its direction

• the object on which it acts (or the part of a large object)

• the object that exerts the force

• the nature of the force

A description of the force shown in the example would thus 

be ‘a 50 N push at 20° to the horizontal acting ON the football 

FROM the boot’.

Different types of forces
The following words all describe the forces (the pushes or 

pulls) that exist in nature. 

Gravitational force Normal reaction Compression 

Electrostatic force Friction Upthrust 

Magnetic force Tension Lift

One way of categorizing these forces is whether they result 

from the contact between two surfaces or whether the force 

exists even if a distance separates the objects.

The origin of all these everyday forces is either gravitational or 

electromagnetic. The vast majority of everyday effects that we 

observe are due to electromagnetic forces.

forces as vectors
Since forces are vectors, vector mathematics must be used to nd 

the resultant force from two or more other forces. A force can also 

be split into its components. See page 7 for more details.

resultant down 

slope =W sin θ

resultant into

slope =W cos θ- R

= zero

(a) by vector mathematics
example: block being pushed on rough surface

(b) by components
example: block sliding down a smooth slope

P, push force
S, surface force

W

weight

W, weight

force diagram:

resultant

force

R

component into slope 

=W cos θ

component down slope 

=W sin θ

θ

θ

W
S

P

Vector addition

free-boDy Diagrams
In a free-body diagram

• one object (and ONLY one object) is chosen 

• all the forces on that object are shown and labelled.

For example, if we considered the simple situation of a book 

resting on a table, we can construct free-body diagrams for 

either the book or the table.

situation:
free-body diagram

for book:
free-body diagram

for table:

RT, reaction from table
P, push from

book

RE W

RE, reaction

from Earth’s

surfaceweight of table

gravitational pull of Earth

w, weight of book

gravitational pull of Earth

measuring forces 
The simplest experimental method for measuring the size of a 

force is to use the extension of a spring. When a spring is in 

tension it increases in length. The difference between the natural 

length and stretched length is called the extension of a spring.

Hooke’s law

Hooke’s law states that up to the elastic limit, the extension, x, 

of a spring is proportional to the tension force, F. The constant 

of proportionality k is called the spring constant. The SI 

units for the spring constant are N m 1. Thus by measuring 

the extension, we can calculate the force.

f d -d d

mathematically,
F ∝ x

F= kx

original
length

extension
= 5.0 cm

2 N

extension
= 15.0 cm

6 N

ex
te

ns
io

n
 / 

cm

force / N

15.0

10.0

5.0

2.0 4.0 6.0 8.0

spring constant
(units N m 1)
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newton’s first law
Newton’s rst law of motion states that ‘an object continues in uniform motion in a straight line or at rest unless a resultant external force 

acts’. On rst reading, this can sound complicated but it does not really add anything to the description of a force given on page 14. All it 

says is that a resultant force causes acceleration. No resultant force means no acceleration – i.e. ‘uniform motion in a straight line’.

b     

since acceleration = zero

resultant force = zero

∴ R W = zero

R

W

p   

If W> F the parachutist accelerates downwards.
As the parachutist gets faster, the air friction increases until
W= F

The parachutist is at constant velocity
(the acceleration is zero).

parachutist
free-falling
downwards

F, air friction

W, weight

If the suitcase is too heavy to lift, it is not moving:

∴ acceleration= zero

∴ P+ R=W

P, pull from person

R, reaction from ground

W, weight of suitcase

l   

c     

At all times force up (2R) = force down (W).
If F> P the car accelerates forwards.
If F= P the car is at constant velocity (zero acceleration).
If F< P the car decelerates (i.e. there is negative
acceleration and the car slows down).

R R

F

P

W

F is force forwards, due to engine
P is force backwards due to air resistance

p       d

The total force up from the oor of the lift = R

The total force down due to gravity =W

If R>W the person is accelerating upwards.
If R=W the person is at constant velocity
(acceleration = zero).
If R<W the person is decelerating (acceleration is
negative).

lif
t m

ov
in

g 
up

w
ar

ds

R

2
R

2

W

n’  
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Different types of forces

Name of force Description 

Gravitational force The force between objects as a result of their masses. This is sometimes referred to as the weight of the 

object but this term is, unfortunately, ambiguous – see page 19.

Electrostatic force The force between objects as a result of their electric charges.

Magnetic force The force between magnets and/or electric currents.

Normal reaction The force between two surfaces that acts at right angles to the surfaces. If two surfaces are smooth then 

this is the only force that acts between them.

Friction The force that opposes the relative motion of two surfaces and acts along the surfaces. Air resistance or 

drag can be thought of as a frictional force – technically this is known as uid friction

Tension When a string (or a spring) is stretched, it has equal and opposite forces on its ends pulling outwards.  

The tension force is the force that the end of the string applies to another object.

Compression When a rod is compressed (squashed), it has equal and opposite forces on its ends pushing inwards.  

The compression force is the force that the ends of the rod applies to another object. This is the opposite 

of the tension force.

Upthrust This is the upward force that acts on an object when it is submerged in a uid. It is the buoyancy force 

that causes some objects to oat in water (see page 164).

Lift This force can be exerted on an object when a uid ows over it in an asymmetrical way. The shape of 

the wing of an aircraft causes the aerodynamic lift that enables the aircraft to y (see page 166).

equilibrium
If the resultant force on an object is zero then it is said to 

be in translational equilibrium (or just in equilibrium). 

Mathematically this is expressed as follows:

Σ F = zero

From Newton’s rst law, we know that the objects in the 

following situations must be in equilibrium.

1. An object that is constantly at rest.

2. An object that is moving with constant (uniform) velocity 

in a straight line.

Since forces are vector quantities, a zero resultant force means 

no force IN ANY DIRECTION.

For 2-dimensional problems it is sufcient to show that the 

forces balance in any two non-parallel directions. If this is the 

case then the object is in equilibrium.

P, pull

tension, T

weight, W

if in equilibrium:

       Tsin θ= P (since no resultant horizontal force)

       Tcos θ= W (since no resultant vertical force)

θ

Translational equilibrium does NOT mean the same thing as 

being at rest. For example if the child in the previous example 

is allowed to swing back and forth, there are times when she is 

instantaneously at rest but he is never in equilibrium. 

T

T

T

W

W

W

At the end of the 
swing the forces
are not balanced
but the child is 
instantaneously 
at rest.

Forces are not
balanced in the centre
as the child is in circular
motion and is 
accelerating (see page 65).

e
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newton’s seconD law of motion

Newton’s rst law states that a resultant force causes 

an acceleration. His second law provides a means of 

calculating the value of this acceleration. The best 

way of stating the second law is use the concept 

of the momentum of an object. This concept is 

explained on page 23. 

A correct statement of Newton’s second law 

using momentum would be ‘the resultant force is 

proportional to the rate of change of momentum’. If 

we use SI units (and you always should) then the law 

is even easier to state – ‘the resultant force is equal to 

the rate of change of momentum’. In symbols, this is 

expressed as follows

In SI units, F =
∆p_
∆t

or, in full calculus notation, F =
dp_
dt

p is the symbol for the momentum of a body.

Until you have studied what this means this will 

not make much sense, but this version of the law is 

given here for completeness.

An equivalent (but more common) way of stating 

Newton’s second law applies when we consider the 

action of a force on a single mass. If the amount 

of mass stays constant we can state the law as 

follows. ‘The resultant force is proportional to 

the acceleration.’ If we also use SI units then ‘the 

resultant force is equal to the product of the mass 

and the acceleration’.

In symbols, in SI units, 

Note:

• The ‘F = ma’ version of the law only applies if we 

use SI units – for the equation to work the mass 

must be in kilograms rather than in grams. 

• F is the resultant force. If there are several forces 

acting on an object (and this is usually true) then 

one needs to work out the resultant force before 

applying the law.

• This is an experimental law.

• There are no exceptions – Newton’s laws apply 

throughout the Universe. (To be absolutely precise, 

Einstein’s theory of relativity takes over at very 

large values of speed and mass.)

The F = ma version of the law can be used whenever 

the situation is simple – for example, a constant 

force acting on a constant mass giving a constant 

acceleration. If the situation is more difcult (e.g. a 

changing force or a changing mass) then one needs to 

use the F =
dp_
dt

version.

examples of newton’s seconD law

1. Use of F = ma in a simple  

situation

If a mass of 3 kg is accelerated in a straight line by a resultant force of 

12N, the acceleration must be 4 m s 2. Since 

F = ma

a =
F
m

=
12_
3

= 4 m s 2

2. Use of F = ma in  

a slightly more  

complicated situation

If a mass of 3 kg is 

accelerated in a straight line by a force of 12 N, and the resultant 

acceleration is 1.5 m s 2, then we can work out the friction that must 

have been acting. Since 

F = ma

resultant force = 3 × 1.5 

= 4.5 N

This resultant force = forward force  friction

therefore, friction = forward force  resultant force 

= 12  4.5 N 

= 7.5 N

3. Use of F = ma in a  

2-dimensional situation

A mass of 3 kg feels a gravitational pull towards the Earth of 30 N.  

What will happen if it is placed on a 30 degree slope given that the 

maximum friction between the block and the slope is 8.0 N? 

normal reaction

3 kg

friction

30°

component

into slope

component down

the slope

30°

30 N

into slope: normal reaction = component into slope

The block does not accelerate into the slope.

down the slope:

component down slope = 30 N × sin 30°

= 15 N

maximum friction force up slope = 8 N 

∴ resultant force down slope = 15  8

= 7 N

F = ma

∴ acceleration down slope =
F
m

=
7
3
= 2.3 m s 2

no friction between block and surface

12 N 3 kg

friction force

acceleration= 1.5 m s 2

12 N 3 kg

30°

normal reaction

3 kg

friction
(max. 8.0 N)

30 N

n’ d 

rl fr 
rd  
w

 rd 
 klgr

lr 
rd  
  2

F = m a
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statement of the law
Newton’s second law is an experimental law that allows us to 

calculate the effect that a force has. Newton’s third law highlights 

the fact that forces always come in pairs. It provides a way of 

checking to see if we have remembered all the forces involved.

It is very easy to state. ‘When two bodies A and B interact, the 

force that A exerts on B is equal and opposite to the force that 

B exerts on A’. Another way of saying the same thing is that 

‘for every action on one object there is an equal but opposite 

reaction on another object’. 

In symbols, 

F
AB
= - F

BA

Key points to notice include 

• The two forces in the pair act on different objects – this 

means that equal and opposite forces that act on the same 

object are NOT Newton’s third law pairs.

• Not only are the forces equal and opposite, but they must be 

of the same type. In other words, if the force that A exerts on 

B is a gravitational force, then the equal and opposite force 

exerted by B on A is also a gravitational force.

n’ d 

examples of the law

push of
B on A

push of
A on B

If one roller-skater
pushes another, they 
both feel a force. The
forces must be equal 
and opposite, but the
acceleration will be 
dierent (since they 
hae dierent
masses.

The person with the
smaller mass will 
ain the reater
elocity.

. m s  . m s 
A B

A B

push of wall
on girl

push of girl
on wall

2.5 m s 1

The force on the
girl causes her
to accelerate 
backwards.

The mass of the
wall (and 
Earth) is so 
large that the
force on it does 
not eectivel
cause an 
acceleration.

f  - a -     

In order to accelerate, there must be a forward force on the car

The engine makes the wheels turn and the wheels push on the

ground.

force from car on ground = - force from ground on car

F, push forward from the ground on the car

a  

R, reaction from table

W, weight

These two forces arenot third
law pairs. There must be another
force (on a dierent object) that
pairs with each one:

R

W

EART

f the table pushes 
upwards on the boo 
with force R, then the
boo must push down on
the table with force R

f the Earth pulls the boo 
down with force W, then the
boo must pull the Earth up 
with force W

a     – n’ d 
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weight
Mass and weight are two very different things. Unfortunately 

their meanings have become muddled in everyday language. 

Mass is the amount of matter contained in an object (measured 

in kg) whereas the weight of an object is a force (measured in N). 

If an object is taken to the Moon, its mass would be the same, 

but its weight would be less (the gravitational forces on the 

Moon are less than on the Earth). On the Earth the two terms 

are often muddled because they are proportional. People talk 

about wanting to gain or lose weight – what they are actually 

worried about is gaining or losing mass.

M 2M

weight, W new weight= 2W

Double the mass means double the weight

To make things worse, the term ‘weight’ can be ambiguous 

even to physicists. Some people choose to dene weight as the 

gravitational force on an object. Other people dene it to be the 

reading on a supporting scale. Whichever denition you use, 

you weigh less at the top of a building compared with at the 

bottom – the pull of gravity is slightly less!

R

situation:

Weight can be dened as either
(a) the pull of gravity, W or

(b) the force on a supporting 
scale R

W

OR

Two different denitions of ‘weight’

Although these two denitions are the same if the object is 

in equilibrium, they are very different in non-equilibrium 

situations. For example, if both the object and the scale 

were put into a lift and the lift accelerated upwards then the 

denitions would give different values.

If the lift is accelerating

upwards:

R> W

a
cce

le
ra

tio
n

u
p

w
a

rd
s

R

W

The safe thing to do is to avoid using the term weight if at all 

possible! Stick to the phrase ‘gravitational force’ or force of 

gravity and you cannot go wrong. 

Gravitational force = m g

On the surface of the Earth, g is approximately 10 N kg 1, 

whereas on the surface of the moon, g ≈ 1.6 N kg 1

m d 
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sd 

factors affecting friction – static 

anD Dynamic

Friction is the force that opposes the relative motion of two 

surfaces. It arises because the surfaces involved are not perfectly 

smooth on the microscopic scale. If the surfaces are prevented 

from relative motion (they are at rest) then this is an example 

of static friction. If the surfaces are moving, then it is called 

dynamic friction or kinetic friction

Friction arises from the 
unevenness of the surfaces.

friction
push

push causes
motion to
RIGHT

friction opposes motion,
acting to LEFT

A key experimental fact is that the value of static friction 

changes depending on the applied force. Up to a certain 

maximum force, F
max

, the resultant force is zero. For example, if 

we try to get a heavy block to move, any value of pushing force 

below F
max

 would fail to get the block to accelerate.

push = zero

P= 0 N

P= 5 N

P= 10 N

P= 15 N

block
stationary

block
stationary

block
stationary

friction, F= zero
F= 0 N

F= 5 N

F= 9 N

F = 10 N (= Fmax)
block accelerates

in
cr

ea
si

ng
 p

us
h

 fo
rc

e

The value of F
max

 depends upon

• the nature of the two surfaces in contact.

• the normal reaction force between the two surfaces. The 

maximum frictional force and the normal reaction force are 

proportional.

If the two surfaces are kept in contact by gravity, the value of 

F
max

 does NOT depend upon the area of contact 

Once the object has started moving, the maximum value of 

friction slightly reduces. In other words, 

F
k
< F

max

For two surfaces moving over one another, the dynamic 

frictional force remains roughly constant even if the speed 

changes slightly.

coefficient of friction

Experimentally, the maximum frictional force and the normal 

reaction force are proportional. We use this to dene the 

coefcient of friction, µ

coecient of friction =µ

F

frictional force

P

reaction, R

W

gravitational attraction Fmax = µR

The coefcient of friction is dened from the maximum value 

that friction can take

F
max

= µ R

where R = normal reaction force

It should be noted that 

• since the maximum value for dynamic friction is less than 

the maximum value for static friction, the values for the 

coefcients of friction will be different 

µ
d
< µ

• the coefcient of friction is a ratio between two forces – it 

has no units.

• if the surfaces are smooth then the maximum friction is 

zero i.e. µ = 0.

• the coefcient of friction is less than 1 unless the surfaces 

are stuck together. 

F
f
≤ µ

s
R and F

f
= µ

d
R

example

If a block is placed on a slope, the angle of the slope can be 

increased until the block just begins to slide down the slope. 

This turns out to be an easy experimental way to measure the 

coefcient of static friction.

If balanced,

F = W sin θ

R = W cos θ

θ is increased.

When block just starts moving,

F = Fmax

static =
Fmax

R

=
W sin θ

W cos θ

= tan θ



R, reaction

component of W down 
slope (W sin θ)

θ

θ

friction F

component of W into
slope (W cos θ)W
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when is work Done?

Work is done when a force moves its point of application in 

the direction of the force. If the force moves at right angles to 

the direction of the force, then no work has been done.

block now

moving –

work has

been done

1) before after

at rest

distance

v

block now 

higher up –

work has 

been done

2) before after

force

force

distance

spring has been 

compressed –

work has

been done

3) before

after

force

force

distance

book supported by shelf –

no work is done

4) before after

object continues at constant velocity –

no work is done

5) before after
constant

velocity v

friction-free surface friction-free surface

v

In the examples above the work done has had different results. 

• In 1) the force has made the object move faster. 

• In 2) the object has been lifted higher in the gravitational eld.

• In 3) the spring has been compressed.

• In 4) and 5), NO work is done. Note that even though 

the object is moving in the last example, there is no force 

moving along its direction of action so no work is done.

examples

smaller force

(1) lifting vertically

(2) pushing along a rough slope

small distance

large force

large distance

The task in the second case would be easier to perform (it 

involves less force) but overall it takes more work since work 

has to be done to overcome friction. In each case, the useful 

work is the same.

If the force doing work is not constant (for example, when a 

spring is compressed), then graphical techniques can be used. 

original length

FA

x
Fmax

xmax

The total work done is  

the area under the  

force–displacement  

graph.

Useful equations for the work done include:

• work done when lifting something vertically = mgh

where m represents mass (in kg) 

g represents the Earth’s gravitational eld strength  

(10 N kg 1) h represents the height change (in m)

• work done in compressing or extending a spring = 1
2

k ∆x2

Definition of work

Work is a scalar quantity. Its denition is as follows.

work done = Fs cos θ

F

θ

s

Work done = F s cos θ

If the force and the displacement are in the same direction, 

this can be simplied to

‘Work done = force × distance’

From this denition, the SI units for work done are N m. We 

dene a new unit called the joule: 1 J = 1 N m.

total work done

= area under graph

xmax

fo
rc

e

Fmax

F = kx

x

0 extension

= k x21
2

w
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concepts of energy anD work
Energy and work are linked together. When you do work on an object, it gains 

energy and you lose energy. The amount of energy transferred is equal to the 

work done. Energy is a measure of the amount of work done. This means that the 

units of energy must be the same as the units of work – joules.

energy transformations – conservation of energy
In any situation, we must be able to account for the changes in energy. If it is ‘lost’ 

by one object, it must be gained by another. This is known as the principle of 

conservation of energy. There are several ways of stating this principle:

• Overall the total energy of any closed system must be constant.

• Energy is neither created nor destroyed, it just changes form.

• There is no change in the total energy in the Universe.

energy types
Kinetic energy Gravitational potential Elastic potential energy

Radiant energy Electrostatic potential Thermal energy

Nuclear energy Solar energy Chemical energy

Electrical energy Internal energy Light energy

Equations for the rst three types of energy are given below.

Kinetic energy = 1
2
mv2 where m is the mass (in kg), v is the velocity (in m s 1)

= 
p2

2m
 where p is the momentum (see page 23) (in kg m s 1), and m is 

the mass (in kg)

Gravitational potential energy = mgh where m represents mass (in kg), g represents 

the Earth’s gravitational eld (10 N kg 1), h represents the height change (in m)

Elastic potential energy = 1
2
k ∆x2 where k is the spring constant (in N m 1), ∆x is 

the extension (in m)

examples
1. A grasshopper (mass 8 g) uses its 

hindlegs to push for 0.1s and as a 

result jumps 1.8 m high. Calculate 

(i) its take off speed, (ii) the 

power developed.

(i) PE gained = mgh

KE at start =
1
2

mv2

1
2

mv2 = mgh (conservation of  

energy)

v = √2gh = √2 × 10 × 1.8

= 6 m s 1

(ii) Power =
mgh_

t

=
0.008 × 10 × 1.8__

0.1

≈ 1.4 W

2. A 60W lightbulb has an efciency of 

10%. How much energy is wasted 

every hour?

Power wasted = 90% of 60W 

= 54W

Energy wasted = 54 × 60 × 60J 

= 190 kJ

power anD efficiency
1. Power

Power is dened as the RATE at which 

energy is transferred. This is the same as 

the rate at which work is done.

Power =
energy transferred__

time taken

Power =
work done__
time taken

The SI unit for power is the joule per 

second (J s 1). Another unit for power is 

dened  the watt (W). 1 W = 1 J s 1. 

If something is moving at a constant 

velocity v against a constant frictional 

force F, the power P needed is P = F v

2. Efciency

Depending on the situation, we can 

categorize the energy transferred (work 

done) as useful or not. In a light bulb, the 

useful energy would be light energy, the 

‘wasted’ energy would be thermal energy 

(and non-visible forms of radiant energy). 

We dene efciency as the ratio of 

useful energy to the total energy 

transferred. Possible forms of the 

equation include:

Efciency =
useful work OUT__

total work IN

Efciency =
useful energy OUT__

total energy IN

Efciency =
useful power OUT__

total power IN

Since this is a ratio it does not have any 

units. Often it is expressed as a percentage.

e d 

K= 1000 J

P= 0 J

K= 250 J

P= 750 J

K≈ 0 J

P= 1000 J

K= 250 J

P= 750 J

K= 500 J

P= 500 J

K= 750 J

P= 250 J
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m d 

conservation of momentum
The law of conservation of linear momentum states that ‘the total 

linear momentum of a system of interacting particles remains 

constant provided there is no resultant external force’.

To see why, we start by imagining two isolated particles A and 

B that collide with one another.

• The force from A onto B, F
AB

 will cause B’s momentum to 

change by a certain amount.

• If the time taken was ∆t, then the momentum change (the 

impulse) given to B will be given by ∆p
B
= F

AB
∆t 

• By Newton’s third law, the force from B onto A, F
BA

 will be 

equal and opposite to the force from A onto B, F
AB

= - F
BA

• Since the time of contact for A and B is the same, then 

the momentum change for A is equal and opposite to the 

momentum change for B, ∆p
A

= - F
AB

∆t.

• This means that the total momentum (momentum of A 

plus the momentum of B) will remain the same. Total 

momentum is conserved.

This argument can be extended up to any number of 

interacting particles so long as the system of particles is still 

isolated. If this is the case, the momentum is still conserved. 

Definitions – linear momentum anD impulse
Linear momentum (always given the symbol p) is dened as 

the product of mass and velocity.

Momentum = mass × velocity 

p = m v

The SI units for momentum must be kg m s 1. Alternative 

units of Ns can also be used (see below). Since velocity is 

a vector, momentum must be a vector. In any situation, 

particularly if it happens quickly, the change of momentum 

∆p is called the impulse (∆p = F ∆t).

use of momentum in newton’s seconD law
Newton’s second law states that the resultant forceis 

proportional to the rate of change of momentum. 

Mathematically we can write this as

F =
(nal momentum  initial momentum)____

time taken
=

∆p_
∆t

Example 1

A jet of water leaves a hose and hits a wall where its velocity 

is brought to rest. If the hose cross-sectional area is 25 cm2, 

the velocity of the water is 50 m s 1 and the density of the 

water is 1000 kg m 3, what is the force acting on the wall?

velocity = 50 m s 1

50 m

density of 

water = 1000 kg m 3

cross-sectional

   area = 25 cm2
= 0.0025 m2

In one second, a jet of water 50 m long hits the wall. So

volume of water hitting wall = 0.0025 × 50 = 0.125 m3

every second

mass of water hitting wall = 0.125 × 1000 = 125 kg

every second

momentum of water hitting wall = 125 × 50 = 6250 kg m s 1

every second

This water is all brought to rest,

∴ change in momentum, ∆p = 6250 kg m s 1

∴ force =
∆p_
∆t

=
6250_

1
= 6250 N

Example 2

The graph below shows the variation with time of the force on 

a football of mass 500 g. Calculate the nal velocity of the ball.

elastic anD inelastic collisions
The law of conservation of linear momentum is not enough to 

always predict the outcome after a collision (or an explosion). 

This depends on the nature of the colliding bodies. For 

example, a moving railway truck, m
A
, velocity v, collides with 

an identical stationary truck m
B
. Possible outcomes are: 

(a) elastic collision

(b) totally inelastic collision

(c) inelastic collision

at rest new velocity= v

mA mB

mA mB

mA mB

new velocity =

new velocity = new velocity =

v

2

v

4
3v
4

In (a), the trucks would have to have elastic bumpers. If this 

were the case then no mechanical energy at all would be lost 

in the collision. A collision in which no mechanical energy 

is lost is called an elastic collision. In reality, collisions 

between everyday objects always lose some energy – the 

only real example of elastic collisions is the collision between 

molecules. For an elastic collision, the relative velocity of 

approach always equals the relative velocity of separation.

In (b), the railway trucks stick together during the collision 

(the relative velocity of separation is zero). This collision 

is what is known as a totally inelastic collision. A large 

amount of mechanical energy is lost (as heat and sound), but 

the total momentum is still conserved.

In energy terms, (c) is somewhere between (a) and (b). Some 

energy is lost, but the railway trucks do not join together. This 

is an example of an inelastic collision. Once again the total 

momentum is conserved.

Linear momentum is also conserved in explosions.
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∴ nal
velocityv= 10 m s 1

p=mv

=

= 10 m s 1

p

m

=
5 N s

0.5 kg

v

The football was given an impulse of approximately

100 × 0.01 = 1 N s during this 0.01 s.

Area under graph is the total

      impulse given to the

      ball ≈ 5 N s
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1. Two identical objects A and B fall from rest from different 

heights. If B takes twice as long as A to reach the ground, 

what is the ratio of the heights from which A and B fell? 

Neglect air resistance.

A. 1: √2 B. 1:2 C. 1:4 D. 1:8

2. A trolley is given an initial push along a horizontal oor to 

get it moving. The trolley then travels forward along the oor, 

gradually slowing. What is true of the horizontal force(s) on 

the trolley while it is slowing?

A. There is a forward force and a backward force, but the 

forward force is larger.

B. There is a forward force and a backward force, but the 

backward force is larger.

C. There is only a forward force, which diminishes with time.

D. There is only a backward force.

3. A mass is suspended by  

cord from a ring which  

is attached by two further  

cords to the ceiling and  

the wall as shown.  

The cord from the ceiling  

makes an angle of less  

than 45° with the vertical  

as shown. The tensions in  

the three cords are labelled  

R, S and T in the diagram.

How do the tensions R, S

and T in the three cords  

compare in magnitude?

A. R > T > S B. S > R > T

C. R = S = T D. R = S > T

4. A 24 N force causes a 2.0 kg mass to accelerate at 8.0 m s 2 along 

a horizontal surface.  The coefcient of dynamic friction is:

A. 0.0 B. 0.4

C. 0.6 D. 0.8 

5. An athlete trains by dragging a heavy load across a rough 

horizontal surface.

25°

F

The athlete exerts a force of magnitude F on the load at an 

angle of 25° to the horizontal.

a) Once the load is moving at a steady speed, the average 

horizontal frictional force acting on the load is 470 N.

Calculate the average value of F that will enable the  

load to move at constant speed. [2]

b) The load is moved a horizontal distance of 2.5 km in 1.2 hours.

Calculate

(i) the work done on the load by the force F. [2]

(ii) the minimum average power required to move  

the load. [2]

c) The athlete pulls the load uphill at the same speed as in 

part (a).

Explain, in terms of energy changes, why the minimum 

average power required is greater than in (b)(ii). [2]

6. A car and a truck are both travelling at the speed limit of  

60 km h 1 but in opposite directions as shown. The truck has 

twice the mass of the car.

The vehicles collide head-on and become entangled together.

a) During the collision, how does the force exerted by  

the car on the truck compare with the force exerted  

by the truck on the car? Explain. [2]

b) In what direction will the entangled vehicles move after 

collision, or will they be stationary? Support  

your answer, referring to a physics principle. [2]

c) Determine the speed (in km h 1) of the combined  

wreck immediately after the collision. [3]

d) How does the acceleration of the car compare with the 

acceleration of the truck during the collision? Explain. [2]

e) Both the car and truck drivers are wearing seat belts. 

Which driver is likely to be more severely jolted in the 

collision? Explain. [2]

f) The total kinetic energy of the system decreases as a result 

of the collision. Is the principle of conservation of energy 

violated? Explain. [1]

7. a) A net force of magnitude F acts on a body. Dene the 

impulse I of the force. [1]

b) A ball of mass 0.0750 kg is travelling horizontally with a 

speed of 2.20 m s 1. It strikes a vertical wall and rebounds 

horizontally.

2.20 ms 1

ball mass

0.0750 kg

Due to the collision with the wall, 20 % of the ball’s initial 

kinetic energy is dissipated.

(i) Show that the ball rebounds from the wall with a 

speed of 1.97 m s 1. [2]

(ii) Show that the impulse given to the ball by the  

wall is 0.313 N s. [2]

c) The ball strikes the wall at time t = 0 and leaves the  

wall at time t = T

The sketch graph shows how the force F that the wall 

exerts on the ball is assumed to vary with time t

F

t
0

T

The time T is measured electronically to equal 0.0894 s.

Use the impulse given in (b)(ii) to estimate the average 

value of F. [4]

ib q – 
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3

T H E R M A L  P H Y S I C S

TemperaTure and heaT flow
Hot and cold are just labels that identify 

the direction in which thermal energy 

(sometimes known as heat) will be 

naturally transferred when two objects 

are placed in thermal contact. This 

leads to the concept of the ‘hotness’ of 

an object. The direction of the natural 

ow of thermal energy between two 

objects is determined by the ‘hotness’ 

of each object. Thermal energy 

naturally ows from hot to cold.

The temperature of an object is a 

measure of how hot it is. In other 

words, if two objects are placed in 

thermal contact, then the temperature 

difference between the two objects will 

determine the direction of the natural 

transfer of thermal energy. Thermal 

energy is naturally transferred ‘down’ 

the temperature difference – from 

high temperature to low temperature. 

Eventually, the two objects would 

be expected to reach the same 

temperature. When this happens, 

they are said to be in thermal 

equilibrium

Heat is not a substance that ows 

from one object to another. What 

has happened is that thermal energy 

has been transferred. Thermal energy 

(heat) refers to the non-mechanical 

transfer of energy between a system 

and its surroundings.

direction of transfer of thermal energy

examples: Gases
For a given sample of a gas, the pressure, the volume and the 

temperature are all related to one another. 

• The pressure, P, is the force per unit area from the gas acting 

at 90° on the container wall. 

p = 
F
A

The SI units of pressure are N m 2 or Pa (Pascals).  

1 Pa = 1 N m 2

Gas pressure can also be measured in atmospheres  

(1 atm ≈ 105 Pa)

• The volume, V, of the gas is measured in m3 or cm3

(1 m3
= 106 cm3)

• The temperature, t, of the gas is measured in °C or K

In order to investigate how these quantities are interrelated, we 

choose:

• one quantity to be the independent variable (the thing we 

alter and measure)

• another quantity to be the dependent variable (the second 

thing we measure). 

• The third quantity needs to be controlled (i.e. kept constant). 

The specic values that will be recorded also depend on the 

mass of gas being investigated and the type of gas being used 

so these need to be controlled as well.

Kelvin and Celsius
Most of the time, there are only two sensible temperature scales to chose  

between – the Kelvin scale and the Celsius scale. 

In order to use them, you do not need to understand the details of how either of 

these scales has been dened, but you do need to know the relation between them. 

Most everyday thermometers are marked with the Celsius scale and temperature is 

quoted in degrees Celsius (°C). 

There is an easy relationship between a temperature T as measured on the Kelvin 

scale and the corresponding temperature t as measured on the Celsius scale. The 

approximate relationship is

T (K) = t (°C) + 273

This means that the ‘size’ of the units used on each scale is identical, but they have 

different zero points. 

C
el

s
iu

s
 s

ca
le

K
el

vi
n

 s
ca

le

0 K

100 K

200 K

300 K

400 K

630 K
600 K

500 K

700 K

373 K

273 K

-273 °C

-200 °C

-100 °C

0 °C

100 °C

200 °C

300 °C

357 °C

400 °C

mercury boils

water boils

water freezes

mercury freezes

carbon dioxide freezes

oxygen boils

hydrogen boils

Notice the size of the units is

identical on each scale.

The Kelvin scale is an absolute thermodynamic temperature scale and a measurement on 

this scale is also called the absolute temperature

Zero Kelvin is called absolute zero (see page 29).

T cct

3 T h e r m a l p h Y s i C s
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miCrosCopiC vs maCrosCopiC
When analysing something physical, we have a choice. 

• The macroscopic point of view considers the system as a 

whole and sees how it interacts with its surroundings. 

• The microscopic point of view looks inside the system to 

see how its component parts interact with each other.

So far we have looked at the temperature of a system in a 

macroscopic way, but all objects are made up of atoms and 

molecules

According to kinetic theory these particles are constantly in 

random motion – hence the name. See below for more details. 

Although atoms and molecules are different things (a molecule 

is a combination of atoms), the difference is not important at 

this stage. The particles can be thought of as little ‘points’ of 

mass with velocities that are continually changing.

heaT and worK
Many people have confused ideas about heat and work. In 

answers to examination questions it is very common to read, 

for example, that ‘heat rises’ – when what is meant is that the 

transfer of thermal energy is upwards.

• When a force moves through a distance, we say that work 

is done. Work is the energy that has been transmitted from 

one system to another from the macroscopic point of view. 

• When work is done on a microscopic level (i.e. on 

individual molecules), we say that heating has taken 

place. Heat is the energy that has been transmitted. It can 

either increase the kinetic energy of the molecules or their 

potential energy or, of course, both.

In both cases energy is being transferred.

inTernal enerGY
If the temperature of an object changes then it must have 

gained (or lost) energy. From the microscopic point of view, 

the molecules must have gained (or lost) this energy. 

The two possible forms are kinetic energy and potential energy.

resultant force back towards equilibrium

position due to neighbouring molecules

∴ molecule has PE

speed in a random direction

∴ molecule has KE

v

equilibrium

position

F

• The molecules have kinetic energy because they are 

moving. To be absolutely precise, a molecule can have 

either translational kinetic energy (the whole molecule is 

moving in a certain direction) or rotational kinetic energy 

(the molecule is rotating about one or more axes). 

• The molecules have potential energy because of the 

intermolecular forces. If we imagine pulling two 

molecules further apart, this would require work against 

the intermolecular forces. 

The total energy that the molecules possess (random kinetic 

plus inter molecule potential) is called the internal energy

of a substance. Whenever we heat a substance, we increase its 

internal energy. 

Temperature is a measure of the average kinetic energy 

of the molecules in a substance.

If two substances have the same temperature, then their 

molecules have the same average kinetic energy.

KineTiC TheorY
Molecules are arranged in different ways depending on the 

phase of the substance (i.e. solid, liquid or gas).

solids
Macroscopically, solids have a xed volume and a xed shape. 

This is because the molecules are held in position by bonds. 

However the bonds are not absolutely rigid. The molecules 

vibrate around a mean (average) position. The higher the 

temperature, the greater the vibrations. 

Each molecule vibrates
around a mean
position.

Bonds
between
molecules

The molecules in a solid are 
held close together by the 
intermolecular bonds.

liquids
A liquid also has a xed volume but its shape can change. 

The molecules are also vibrating, but they are not completely 

xed in position. There are still strong forces between the 

molecules. This keeps the molecules close to one another, but 

they are free to move around each other.

Each molecule is free 
to move throughout the 
liquid by moving around 
its neighbours.

Bonds between 
neighbouring 
molecules; these can 
be made and broken, 
allowing a molecule to 
move.

Gases
A gas will always expand to ll the container in which it is 

put. The molecules are not xed in position, and any forces 

between the molecules are very weak. This means that the 

molecules are essentially independent of one another, but 

they do occasionally collide. More detail is given on page 31.

Molecules in random 
motion; no xed bonds 
between molecules so 
they are free to move

ht  t gy

molecules with small

mass moving with

higher average speed

same temperature

v

M

molecules with large

mass moving with

lower average speed

same average

kinetic energy V

m
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definiTions and miCrosCopiC explanaTion
In theory, if an object could be heated up with no energy loss, 

then the increase in temperature ∆T depends on three things:

• the energy given to the object Q

• the mass, m, and 

• the substance from which the object is made.

small temperature

change since

more molecules

1000 J 1000 J

mass m
substance X

mass m
substance Y

dierent temperature 

change

large temperature

change since fewer

molecules

Two different blocks with the same mass and same energy 

input will have a different temperature change.

We dene the thermal capacity C of an object as the energy 

required to raise its temperature by 1 K. Different objects 

(even different samples of the same substance) will have 

different values of heat capacity. Specic heat capacity is 

the energy required to raise a unit mass of a substance  

by 1 K. ‘Specic’ here just means ‘per unit mass’. 

In symbols, 

Thermal capacity C =
Q_
∆T

 (J K 1 or J °C 1)

Specic heat 

capacity
c =

Q_
(m ∆T)

(J kg 1 K 1 or J kg 1 °C 1)

Q = mc∆T

Note

• A particular gas can have many different values of specic heat 

capacity – it depends on the conditions used – see page 161.

• These equations refer to the temperature difference

resulting from the addition of a certain amount of energy. In 

other words, it generally takes the same amount of energy 

to raise the temperature of an object from 25 °C to 35 °C as 

it does for the same object to go from 402 °C to 412 °C. This 

is only true so long as energy is not lost from the object.

• If an object is raised above room temperature, it starts to 

lose energy. The hotter it becomes, the greater the rate at 

which it loses energy.

time

te
m

p
er

a
tu

re increase in 

temperature if no 

energy is lost

increase in 

temperature

 in a real situation

Temperature change of an object being heated at a 

constant rate

meThods of measurinG heaT CapaCiTies and 

speCifiC heaT CapaCiTies
The are two basic ways to measure heat capacity. 

1. Electrical method

The experiment would be set up as below:

A

V

variable power supply

heater (placed in object)

voltmeter

ammeter

• the specic heat capacity c =
I t V_

m(T
2

 T
1
)

Sources of experimental error

• loss of thermal energy from the apparatus.

• the container for the substance and the heater will also be 

warmed up. 

• it will take some time for the energy to be shared 

uniformly through the substance.

2. Method of mixtures

The known specic heat capacity of one substance can be used 

to nd the specic heat capacity of another substance.

before

after

temperature TA (hot) temperature TB
(cold)

temperature Tmax

mix together

mass mA mass mB

Procedure:

• measure the masses of the liquids m
A

and m
B

• measure the two starting temperatures T
A
 and T

B

• mix the two liquids together.

• record the maximum temperature of the mixture T
max

If no energy is lost from the system then, 

energy lost by hot substance cooling down = energy 

gained by cold substance heating up

m
A
 c

A
 (T

A
 T

max
) = m

B
 c

B
 (T

max
 T

B
)

Again, the main source of experimental error is the loss of 

thermal energy from the apparatus; particularly while the 

liquids are being transferred. The changes of temperature of 

the container also need to be taken into consideration for a 

more accurate result.

scc t ccty
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p (tt)  tt  tt t

definiTions and miCrosCopiC view
When a substance changes phase, the temperature remains 

constant even though thermal energy is still being transferred.

te
m

p
e

ra
tu

re
 /

 
°C 500

400

300

200

100

1 2 3 4 6 7 8 9 10 11 12 13 145
time / min

molten lead

liquid and
solid mix

solid

Cooling curve for molten lead (idealized)

The amount of energy associated with the phase change is 

called the latent heat. The technical term for the change 

of phase from solid to liquid is fusion and the term for the 

change from liquid to gas is vaporization

The energy given to the molecules does not increase their 

kinetic energy so it must be increasing their potential energy. 

Intermolecular bonds are being broken and this takes energy. 

When the substance freezes bonds are created and this process 

releases energy.

It is a very common mistake to think that the molecules must 

speed up during a phase change. The molecules in water 

vapour at 100 °C must be moving with the same average 

speed as the molecules in liquid water at 100 °C. 

The specic latent heat of a substance is dened as the 

amount of energy per unit mass absorbed or released during a 

change of phase.

In symbols, 

Specic latent heat L =

Q

M
(J kg 1) Q = ML

In the idealized situation of no energy loss, a constant rate 

of energy transfer into a solid substance would result in a 

constant rate of increase in temperature until the melting 

point is reached:

solid and liquid mix

liquid

solid

energy supplied/J

te
m

p
er

a
tu

re
/°

C

Phase-change graph with temperature vs energy

In the example above, the specic heat capacity of the liquid is 

less than the specic heat capacity of the solid as the gradient 

of the line that corresponds to the liquid phase is greater than 

the gradient of the line that corresponds to the solid phase. 

A given amount of energy will cause a greater increase in 

temperature for the liquid when compared with the solid.

meThods of measurinG
The two possible methods for measuring latent heats shown 

below are very similar in principle to the methods for 

measuring specic heat capacities (see previous page).

1. A method for measuring the specic latent heat of 

vaporization of water

A

V

variable power supply

set-up electrical circuit

to electrical

circuit

water

beaker

heater

heater

voltmeter
ammeter

The amount of thermal energy provided to water at its boiling 

point is calculated using electrical energy = I t V. The mass 

vaporized needs to be recorded.

• The specic latent heat L =

I t V_
(m

1
m

2
)

Sources of experimental error

• Loss of thermal energy from the apparatus.

• Some water vapour will be lost before and after timing.

2. A method for measuring the specic latent heat of 

fusion of water

Providing we know the specic heat capacity of water, we can 

calculate the specic latent heat of fusion for water. In the 

example below, ice (at 0 °C) is added to warm water and the 

temperature of the resulting mix is measured.

mass: mwater +mice

temp.: Tmix

ice water

mix together

mass: mice

temp.: 0 °C

mass: mwater

temp.: T °C

If no energy is lost from the system then, 

energy lost by water cooling down = energy gained by ice

m
water

c
water

 (T
water

T
mix

) = m
ice
L

fusion
+ m

ice
c

water
T

mix

Sources of experimental error

• Loss (or gain) of thermal energy from the apparatus. 

• If the ice had not started at exactly zero, then there would 

be an additional term in the equation in order to account 

for the energy needed to warm the ice up to 0 °C. 

• Water clinging to the ice before the transfer. 
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T g  1

Gas laws
For the experimental methods shown below, the graphs below 

outline what might be observed.

(a) constant volume

(b) constant pressure

(c) constant temperature

300 200 100 0 100

300 200 100 0 100

volume / m3

p
re

ss
u

re
 /

 P
a

temp. / °C

temp. / °C

pressure / Pa

volume / m3

graph extrapolates 

back to 273 °C

graph extrapolates 

back to 273 °C

Points to note:

• Although pressure and volume both vary linearly with 

Celsius temperature, neither pressure nor volume is 

proportional to Celsius temperature. 

• A different sample of gas would produce a different straight-

line variation for pressure (or volume) against temperature 

but both graphs would extrapolate back to the same low 

temperature, 273 °C. This temperature is known as 

absolute zero

• As pressure increases, the volume decreases. In fact they are 

inversely proportional. 

The trends can be seen more clearly if this information is 

presented in a slightly different way.

(1) constant volume

(2) constant pressure

(3) constant temperature

absolute temperature / K

absolute temperature / K

vo
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m
e

 /
 m

3

 / m 3
volume

1

From these graphs for a xed mass of gas we can say that:

1. At constant V, p ∝ T or 
p

T
= constant (the pressure law)

2. At constant p, V ∝ T or 
V

T
= constant (Charles’s law)

3. At constant T, p ∝
1
V

 or p V = constant (Boyle’s law)

These relationships are known as the ideal gas laws. The 

temperature is always expressed in Kelvin (see page 25). These 

laws do not always apply to experiments done with real gases. 

A real gas is said to ‘deviate’ from ideal behaviour under certain 

conditions (e.g. high pressure).

experimenTal invesTiGaTions
1. Temperature t as the independent variable; P as the 

dependent variable; V as the control.

pressure gauge
to measure P

temperature t measured

xed volume of air
water (or oil) bath

surface of water

air in
ask

• Fixed volume of gas is trapped in the ask. Pressure is 

measured by a pressure gauge.

• Temperature of gas altered by temperature of bath – time is 

needed to ensure bath and gas at same temperature.

2. Temperature t as the independent variable; V as the 

dependent variable; P as the control.

temperature t measured
capillary tube

water bath

scale to measure V
(length and volume)

gas (air)
volume Vzero of scale

surface of water

bead of
sulfuric acid

• Volume of gas is trapped in capillary tube by bead of 

concentrated sulfuric acid.

• Concentrated sulfuric acid is used to ensure gas 

remainsdry.

• Heating gas causes it to expand moving bead. 

• Pressure remains equal to atmospheric.

• Temperature of gas altered by temperature of bath; time 

is needed to ensure bath and gas at same temperature.

3. P as the independent variable; V as the dependent variable; 

tas the control.

air pump

pressure gauge
to measure pscale to

measure V
(length 
and volume) oil column

trapped air

oil

zero of scale

surface of oil

• Volume of gas measured against calibrated scale.

• Increase of pressure forces oil column to compress gas.

• Temperature of gas will be altered when volume is 

changed; time is needed to ensure gas is always at room 

temperature.
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T g  2

equaTion of sTaTe
The three ideal gas laws can be combined together to produce 

one mathematical relationship.

pV_
T

= constant

This constant will depend on the mass and type of gas.

If we compare the value of this constant for different masses 

of different gases, it turns out to depend on the number of 

molecules that are in the gas – not their type. In this case 

weuse the denition of the mole to state that for n moles of 

ideal gas

pV_
nT

= a universal constant.

The universal constant is called the molar gas constant R. 

The SI unit for R is J mol 1 K 1

R = 8.314 J mol 1 K 1

Summary:
pV_
nT

= R Or p V = n R T

definiTions
The concepts of the mole, molar mass and the Avogadro 

constant are all introduced so as to be able to relate the mass 

of a gas (an easily measurable quantity) to the number of 

molecules that are present in the gas.

Ideal gas An ideal gas is one that follows the gas 

laws for all values of of P, V and T (see 

page 29). 

Mole The mole is the basic SI unit for 

‘amount of substance’. One mole of 

any substance is equal to the amount 

of that substance that contains the 

same number of particles as 0.012 kg of 

carbon–12 (12C). When writing the unit 

it is (slightly) shortened to the mol. 

Avogadro This is the number of atoms in 0.012 kg

constant, N
A

of carbon–12 (12C). It is 6.02 × 1023. 

Molar mass The mass of one mole of a substance 

is called the molar mass. A simple rule 

applies. If an element has a certain mass 

number, A, then the molar mass will be 

A grams.

n =
N_
N

A

number of moles =
number of atoms__

Avogadro constant

linK beTween The maCrosCopiC and 

miCrosCopiC
The equation of state for an ideal gas, pV = nRT, links the three 

macroscopic properties of a gas (p, V and T). Kinetic theory 

(page 26) describes a gas as being composed of molecules in 

random motion and for this theory to be valid, each of these 

macroscopic properties must be linked to the microscopic 

behaviour of molecules. 

A detailed analysis of how a large number of randomly 

moving molecules interact beautifully predicts another 

formula that allows the links between the macroscopic and 

the microscopic to be identied. The derivation of the formula 

only uses Newton’s laws and a handful of assumptions. These 

assumptions describe from the microscopic perspective what we 

mean by an ideal gas. 

The detail of this derivation is not required by the IB syllabus but 

the assumptions and the approach are outlined on the following 

page. The result of this derivation is that the pressure and 

volume of the idealized gas are related to just two quantities:

pV =
2
3

NE
K

• The number of molecules present, N

• The average random kinetic energy per molecule, E
K

Equating the right-hand side of this formula with the right- 

hand side of the macroscopic equation of state for an ideal gas 

shows that:

nRT =
2
3

NE
K

But n =
N_
N

A

, so

N_
N

A

RT =
2
3

NE
K

∴ E
K 
=

3
2

R_
N

A

T

R (the molar gas constant) and N
A
 (Avogadro constant) are 

xed numbers so this equation shows that the absolute 

temperature is proportional to the average KE per molecule

T ∝ E
K

The ratio R
N

A

 is called the Boltzmann’s constant k
B
. k

B 
=

R
N

A

E
K 
=

3
2

k
B
T =

3
2

R_
N

A

T

example
a) What volume will be occupied by 8 g of helium (mass 

number 4) at room temperature (20 °C) and atmospheric 

pressure (1.0 × 105 Pa)

n =
8
4

= 2 moles

T = 20 + 273 = 293 K

V =
nRT_

p =
2 × 8.314 × 293__

1.0 × 105
= 0.049 m3

b) How many atoms are there in 8 g of helium (mass number 4)?

n =
8
4

= 2 moles

number of atoms = 2 × 6.02 × 1023

= 1.2 × 1024

ideal Gases and real Gases
An ideal gas is a one that follows the gas laws for all values 

of p, V and T and thus ideal gases cannot be liqueed. The 

microscopic description of an ideal gas is given on page 31. 

Real gases, however, can approximate to ideal behaviour 

providing that the intermolecular forces are small enough 

to be ignored. For this to apply, the pressure/density of the 

gas must be low and the temperature must be moderate.
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KineTiC model of an ideal Gas
Assumptions:

• Newton’s laws apply to molecular 

behaviour

• there are no intermolecular forces 

except during a collision

• the molecules are treated as points

• the molecules are in random motion

• the collisions between the molecules 

are elastic (no energy is lost)

• there is no time spent in these 

collisions.

The pressure of a gas is explained as 

follows:

The pressure of a gas is a result of 

collisions between the molecules and the 

walls of the container.

before

after

result

wall

wall

overall force

on molecule

overall force

on wall

A single molecule hitting the walls of the 

container.

• When a molecule bounces off the 

walls of a container its momentum 

changes (due to the change in 

direction – momentum is a vector).

• There must have been a force on the 

molecule from the wall (Newton II).

• There must have been an equal and 

opposite force on the wall from the 

molecule (Newton III).

• Each time there is a collision between 

a molecule and the wall, a force is 

exerted on the wall.

• The average of all the microscopic 

forces on the wall over a period of 

time means that there is effectively a 

constant force on the wall from the gas.

• This force per unit area of the wall is 

what we call pressure.

P =

F

A

Since the temperature of a gas is a measure 

of the average kinetic energy of the 

molecules, as we lower the temperature of 

a gas the molecules will move slower. At 

absolute zero, we imagine the molecules 

to have zero kinetic energy. We cannot go 

any lower because we cannot reduce their 

kinetic energy any further!

pressure law
Macroscopically, at a constant  

volume the pressure of a gas is 

proportional to its temperature in 

kelvin (see page 29). Microscopically 

this can be analysed as follows

• If the temperature of a gas goes up, 

the molecules have more average 

kinetic energy – they are moving 

faster on average.

• Fast moving molecules will have a 

greater change of momentum when 

they hit the walls of the container.

• Thus the microscopic force from 

each molecule will be greater.

• The molecules are moving faster so 

they hit the walls more often.

• For both these reasons, the total 

force on the wall goes up.

• Thus the pressure goes up.

low temperature high temperature

constant volume
low pressure high pressure

Microscopic justication of the 

pressure law

Charles’s law
Macroscopically, at a constant pressure, 

the volume of a gas is proportional to 

its temperature in kelvin (see page 29). 

Microscopically this can be analysed as 

follows

• A higher temperature means faster 

moving molecules (see left).

• Faster moving molecules hit the 

walls with a greater microscopic 

force (see left). 

• If the volume of the gas increases, 

then the rate at which these 

collisions take place on a unit area 

of the wall must go down.

• The average force on a unit area of 

the wall can thus be the same.

• Thus the pressure remains the same.

high volume

low temperature high temperature

constant
pressure

low volume

Microscopic justication of 

Charles’s law

boYle’s law
Macroscopically, at a constant 

temperature, the pressure of a gas is 

inversely proportional to its volume 

(see page 29). Microscopically this can 

be seen to be correct.

• The constant temperature of gas 

means that the molecules have a 

constant average speed. 

• The microscopic force that each 

molecule exerts on the wall will 

remain constant.

• Increasing the volume of the 

container decreases the rate with 

which the molecules hit the wall – 

average total force decreases.

• If the average total force decreases 

the pressure decreases.

high pressure low pressure

constant
temperature

low volume high volume

Microscopic justication of Boyle’s law
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The following information relates to questions 1 and 2 below.

A substance is heated at a constant rate of energy transfer.  

A graph of its temperature against time is shown below.

K

L M

N O

P

time

te
m
p
e
ra
tu
re

1. Which regions of the graph correspond to the substance 

existing in a mixture of two phases?

A. KL, MN and OP

B. LM and NO

C. All regions

D. No regions

2. In which region of the graph is the specic heat capacity of 

the substance greatest?

A. KL

B. LM

C. MN

D. OP

3. When the volume of a gas is isothermally compressed to 

a smaller volume, the pressure exerted by the gas on the 

container walls increases. The best microscopic explanation 

for this pressure increase is that at the smaller volume

A. the individual gas molecules are compressed

B. the gas molecules repel each other more strongly

C. the average velocity of gas molecules hitting the wall is greater

D. the frequency of collisions with gas molecules with the 

walls is greater

4. A lead bullet is red into an iron plate, where it deforms and 

stops. As a result, the temperature of the lead increases by an 

amount ∆T. For an identical bullet hitting the plate with twice 

the speed, what is the best estimate of the temperature increase?

A. ∆T

B. 2 ∆T

C. 2 ∆T

D. 4 ∆T

5. In winter, in some countries, the water in a swimming pool 

needs to be heated.

a) Estimate the cost of heating the water in a typical swimming 

pool from 5 °C to a suitable temperature for swimming. You 

may choose to consider any reasonable size of pool.

Clearly show any estimated values. The following 

information will be useful:

Specic heat capacity of water 4186 J kg 1 K 1

Density of water 1000 kg m 3

Cost per kW h of electrical energy $0.10

(i) Estimated values [4]

(ii) Calculations [7]

b) An electrical heater for swimming pools has the following 

information written on its side:

50 Hz 2.3 kW

(i) Estimate how many days it would take this  

heater to heat the water in the swimming pool. [4]

(ii) Suggest two reasons why this can only be an 

approximation. [2]

6. a) A cylinder tted with a piston contains 0.23 mol of  

helium gas.

piston

helium gas

The following data are available for the helium with the 

piston in the position shown.

Volume = 5.2 × 10 3 m3

Pressure = 1.0 × 105 Pa

Temperature = 290 K

(i) Use the data to calculate a value for the universal  

gas constant. (2)

 (ii) State the assumption made in the calculation  

in (a)(i). (1)

7. This question is about determining the specic latent heat of 

fusion of ice.

A student determines the specic latent heat of fusion of 

ice at home. She takes some ice from the freezer, measures 

its mass and mixes it with a known mass of water in an 

insulating jug. She stirs until all the ice has melted and 

measures the nal temperature of the mixture. She also 

measured the temperature in the freezer and the initial 

temperature of the water.

She records her measurements as follows:

Mass of ice used

Initial temperature of ice

m
i

T
i

0.12 kg

12 °C

Initial mass of water

Initial temperature of water

m
w

T
w

0.40 kg

22 °C

Final temperature of mixture T
f

15 °C

The specic heat capacities of water and ice are  

c
w
= 4.2 kJ kg 1 °C 1 and c

i
= 2.1 kJ kg 1 °C 1

a) Set up the appropriate equation, representing energy 

transfers during the process of coming to thermal 

equilibrium, that will enable her to solve for the 

specic latent heat L
i
 of ice. Insert values into the 

equation from the data above, but do not solve  

the equation. [5]

b) Explain the physical meaning of each energy transfer 

term in your equation (but not each symbol). [4]

c) State an assumption you have made about the 

experiment, in setting up your equation in (a). [1]

d) Why should she take the temperature of  

the mixture immediately after all the ice  

has melted? [1]

e) Explain from the microscopic point of view, in terms 

of molecular behaviour, why the temperature of the 

ice does not increase while it is melting. [4]

I B  Q u E S T I o n S  –  T H E R M A L P H Y S I C S
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DefinitiOns
Many systems involve vibrations or oscillations; 

an object continually moves to-and-fro about a 

xed average point (the mean position) retracing 

the same path through space taking a xed 

time between repeats. Oscillations involve the 

interchange of energy between kinetic and potential.

Kinetic 

energy

Potential 

energy store

Mass moving 

between two 

horizontal springs

Moving 

mass

Elastic potential 

energy in the 

springs

Mass moving on 

a vertical spring

Moving 

mass

Elastic potential 

energy in the 

springs and 

gravitational 

potential 

energy

Simple pendulum Moving 

pendulum 

bob

Gravitational 

potential 

energy of bob

Buoy bouncing 

up and down in 

water

Moving 

buoy

Gravitational 

PE of buoy and 

water

An oscillating 

ruler as a result 

of one end being 

displaced while 

the other is xed

Moving 

sections 

of the 

ruler

Elastic PE of 

the bent ruler

Denition

Displacement, 

x

The instantaneous distance (SI 

measurement: m) of the moving 

object from its mean position (in a 

specied direction)

Amplitude, A The maximum displacement (SI 

measurement: m) from the mean 

position

Frequency, f The number of oscillations 

completed per unit time. The SI 

measurement is the number of 

cycles per second or Hertz (Hz).

Period, T The time taken (SI measurement: s) 

for one complete oscillation. T =
1

f

Phase 

difference, ø

This is a measure of how ‘in step’ 

different particles are. If moving 

together they are in phase. ø is 

measured in either degrees (°) or 

radians (rad). 360° or 2π rad is one 

complete cycle so 180° or π rad is 

completely out of phase by half a 

cycle. A phase difference of 90° or 

π/2 rad is a quarter of a cycle.

object oscillates between extremes

displacement, x

mean position

amplitude, A

simple HarmOnic mOtiOn (sHm)
Simple harmonic motion is dened as the motion that takes place 

when the acceleration, a, of an object is always directed towards, and 

is proportional to, its displacement from a xed point. This acceleration 

is caused by a restoring force that must always be pointed towards 

the mean position and also proportional to the displacement from the 

mean position.

F ∝ -x or F = - (constant) × x

Since F = ma

a ∝ -x or a = - (constant) × x

The negative sign signies that the acceleration is always pointing back 

towards the mean position.

A

-A

acceleration a / m s 2

displacement x / m

Points to note about SHM:

• The time period T does not depend on the amplitude A. It is 

isochronous

• Not all oscillations are SHM, but there are many everyday examples 

of natural SHM oscillations.

example Of sHm: mass between twO springs

4 w a V e s

simple harmonic motion

large displacement to right

displacement

against time

velocity

against time

acceleration

against time

maximum 
displacement
zero velocity
maximum
acceleration

zero
displacement
maximum
velocity
zero
acceleration

maximum
displacement
zero velocity
maximum
acceleration

small displacement to right

small displacement to left

large displacement to left

large force to left

right

left

right

left

right

left

right

left

right

left

zero
velocity

small velocity
to left

large velocity
to left

small velocity
to left

small force to left

small force to right

large force to right

zero net force

zero velocity

mass m

mass m

mass m

mass m

mass m
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acceleratiOn, VelOcity anD Displacement During sHm

displacement

velocity

acceleration

time
T

4
3T

4
T

2
T

• acceleration leads velocity by 90°

• velocity leads displacement by 90°

• acceleration and displacement are 

180° out of phase

• displacement lags velocity by 90°

• velocity lags acceleration by 90°

energy cHanges During simple HarmOnic mOtiOn
During SHM, energy is interchanged between KE and PE. Providing there are no resistive forces which dissipate this energy, the 

total energy must remain constant. The oscillation is said to be undamped

Energy in SHM is proportional to:

• the mass m

• the (amplitude)2

• the (frequency)2

t

p

tot

k

x0

Graph showing the

variation with distance, x

of the energy during SHM

tot

k

p

TT

4
T

2
3T

4

Graph showing the

variation with time, t

of the energy

during SHM   

E

x0
x


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intrODuctiOn – rays anD waVe frOnts 
Light, sound and ripples on the surface of a pond are all 

examples of wave motion.

• They all transfer energy from one place to another.

• They do so without a net motion of the medium through 

which they travel. 

• They all involve oscillations (vibrations) of one sort or 

another. The oscillations are SHM.

A continuous wave involves a succession of individual 

oscillations. A wave pulse involves just one oscillation. 

Two important categories of wave are transverse and 

longitudinal (see below). The table gives some examples.

The following pages analyse some of the properties that are 

common to all waves.

Example of energy transfer

Water ripples 

(Transverse)

A oating object gains an ‘up and 

down’ motion.

Sound waves 

(Longitudinal)

The sound received at an ear makes 

the eardrum vibrate.

Light wave 

(Transverse)

The back of the eye (the retina) is 

stimulated when light is received.

Earthquake waves 

(Both T and L)

Buildings collapse during an 

earthquake.

Waves along a 

stretched rope 

(Transverse)

A ‘sideways pulse’ will travel down 

a rope that is held taut between two 

people.

Compression waves 

down a spring 

(Longitudinal)

A compression pulse will travel 

down a spring that is is held taut 

between two people.

lOngituDinal waVes
Sound is a longitudinal wave. This is because the  

oscillations are parallel to the direction of energy transfer. 

o

(2) ray diagram
view from above

(1) wave front diagram

loudspeaker

direction

of energy

transfer

cross-section through wave at one instant of time

lo
u

d
sp

ea
ke

r

motion of air molecules in
same direction as energy 
transfer

wave pattern moves 
out from loudspeaker

A point on the wave where everything is ‘bunched together’ 

(high pressure) is known as a compression. A point 

where everything is ‘far apart’ (low pressure) is known as a 

rarefaction. 

displacement
of molecules

variation of
pressure

situation

to the right

to the left

average
pressure

distance 
along wave

distance 
along wave

rarefaction rarefaction rarefaction

wave moves
to right

v

compression compression

Relationship between displacement and pressure graphs

transVerse waVes
Suppose a stone is thrown into a pond. Waves spread out as 

shown below. 

situation

(1) wave front diagram (2) ray diagram

cross-section through water
wave pattern moves
out from centre wave pattern at a given

instant of time

‘up’ and ‘down’
wave pattern slightly
later in time

centre of pond edge of pond

direction of
energy ow

The top of the wave is known as the crest, whereas the 

bottom of the wave is known as the trough

Note that there are several aspects to this wave that can be 

studied. These aspects are important to all waves.

• The movement of the wave pattern. The wave fronts

highlight the parts of the wave that are moving together.

• The direction of energy transfer. The rays highlight the 

direction of energy transfer.

• The oscillations of the medium.

It should be noted that the rays are at right angles to the wave 

fronts in the above diagrams. This is always the case.

This wave is an example of a transverse wave because the 

oscillations are at right angles to the direction of energy 

transfer.

Transverse mechanical waves cannot be propagated through 

uids (liquids or gases).
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DefinitiOns

There are some useful terms that need to be dened in order to analyse wave 

motion in more detail. The table below attempts to explain these terms and they are 

also shown on the graphs. 

Because the graphs seem to be identical, you need to look at the axes of the graphs 

carefully. 

• The displacement–time graph on the left represents the oscillations for one point 

on the wave. All the other points on the wave will oscillate in a similar manner, 

but they will not start their oscillations at exactly the same time.

• The displacement–position graph on the right represents a ‘snapshot’ of all the 

points along the wave at one instant of time. At a later time, the wave will have 

moved on but it will retain the same shape.

• The graphs can be used to represent longitudinal AND transverse waves because 

the y-axis records only the value of the displacement. It does NOT specify the 

direction of this displacement. So, if this displacement were parallel to the 

direction of the wave energy, the wave would be a longitudinal wave. If this 

displacement were at right angles to the direction of the wave energy, the wave 

would be a transverse wave. 

position / m

λ

d
is

p
la

ce
m

e
n

t 
/ 
x

AA

time / s

d
is

p
la

ce
m

e
n

t 
/ 
x + T

Term Symbol Denition

Displacement x This measures the change that has taken place 

as a result of a wave passing a particular point. 

Zero displacement refers to the mean (or average) 

position. For mechanical waves the displacement is 

the distance (in metres) that the particle moves from 

its undisturbed position.

Amplitude A This is the maximum displacement from the mean 

position. If the wave does not lose any of its energy 

its amplitude is constant. 

Period T This is the time taken (in seconds) for one complete 

oscillation. It is the time taken for one complete wave 

to pass any given point. 

Frequency f This is the number of oscillations that take place in one 

second. The unit used is the hertz (Hz). A frequency of 

50 Hz means that 50 cycles are completed every second. 

Wavelength λ This is the shortest distance (in metres) along the 

wave between two points that are in phase with 

one another. ‘In phase’ means that the two points 

are moving exactly in step with one another. For 

example, the distance from one crest to the next 

crest on a water ripple or the distance from one 

compression to the next one on a sound wave. 

Wave speed c This is the speed (in m s 1) at which the wave fronts 

pass a stationary observer. 

Intensity I The intensity of a wave is the power per unit area 

that is received by the observer. The unit is W m 2. 

The intensity of a wave is proportional to the square 

of its amplitude: I ∝ A2

The period and the frequency of any wave are inversely related. For example, if the 

frequency of a wave is 100 Hz, then its period must be exactly 1___
100

of a second. 

In symbols, 

T =
1

f

waVe equatiOns

There is a very simple relationship 

that links wave speed, wavelength and 

frequency. It applies to all waves.

The time taken for one complete 

oscillation is the period of the wave, T

In this time, the wave pattern will have 

moved on by one wavelength, λ

This means that the speed of the wave 

must be given by 

c =
distance________

time
=

λ

T

Since
1
T
= f

c = f λ

In words, 

velocity = frequency × wavelength

example

A stone is thrown onto a still water 

surface and creates a wave. A small 

oating cork 1.0 m away from the 

impact point has the following 

displacement–time graph (time is 

measured from the instant the stone 

hits the water):

2

1

0

1

2

d
is
p
la
ce
m
e
n
t/
cm

1.4 1.5 1.6 1.7 1.8

time/s

a) the amplitude of the wave:

.........................................................

b) the speed of the wave:

.........................................................

c) the frequency of the wave:

.........................................................

d) the wavelength of the wave:

.........................................................

2 cm

c =
d
t
=

1.0____
1.5

= 0.67 m s 1

f =
1
T
=

1____
0.3

= 3.33 Hz

λ =
c

f
=

0.666______
3.33

= 0.2 m
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electrOmagnetic waVes
Visible light is one 

part of a much larger 

spectrum of similar 

waves that are all 

electromagnetic. 

Charges that are 

accelerating generate 

electromagnetic 

elds. If an electric 

charge oscillates, 

it will produce a 

varying electric and 

magnetic eld at 

right angles to one 

another. 

These oscillating elds 

propagate (move) 

as a transverse wave 

through space. Since 

no physical matter 

is involved in this 

propagation, they 

can travel through a 

vacuum. The speed 

of this wave can be 

calculated from basic 

electric and magnetic 

constants and it 

is the same forall 

electromagnetic waves, 

3.0 × 108 m s 1. 

Although all 

electromagnetic 

waves are identical 

in their nature, they 

have very different 

properties. This is 

because of the huge 

range of frequencies 

(and thus energies) 

involved in the 

electromagnetic 

spectrum.

See page 132 

(option A) for more 

details. 
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1022

1021

1020

1019

1018

1017

1016

1015

1014

1013

1012

1011

1010

109

108

107

106

105

104

103

γ-rays

X-rays

UV

IR

microwaves

short radio waves

standard broadcast

long radio

waves

3 × 1015 Hz

1 × 1015 Hz

frequency

possible

source

wavelength

3 × 1014 Hz

UV

Violet

Indigo

Red

10 7 m

10 6 m

radium

X-ray tube

light bulb

microwave oven

TV broadcast aerial

electric heater

10 13

10 12

10 11

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

1

101
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103

104

105

radio broadcast aerial
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Green
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the sun
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1. Direct metHODs
The most direct method to measure the speed of sound is to record the time taken t for sound to cover a known distance d: speed c= d

t
. In 

air at normal pressures and temperatures, sound travels at approximately 330 m s 1. Given the much larger speed of light (3× 108 m s 1), 

a possible experiment would be to use a stop watch to time the difference between seeing an event (e.g. the ring of a starting pistol for a 

race or seeing two wooden planks being hit together) and hearing the same event some distance away (100m or more).

Echoes can be used to put the source and observer of the sound in the same place. Standing a distance d in front of a tall wall (e.g. 

the side of a building that is not surrounded by other buildings) can allow the echo from a pulse of sound (e.g. a single clap of the 

hands) to be heard. With practice, it is possible for an experimenter to adjust the frequency of clapping to synchronize the sound of 

the claps with their echoes.  When this is achieved, the frequency of clapping  f can be recorded (counting the number of claps in 

a given time) and the time period T between claps is just T = 1

f
. In this time, the sound travels to the wall and back. The speed of 

sound is thus c = 2df.

In either of the above situations a more reliable result will be achieved if a range of distances, rather than one single value is used.  

A graph of distance against time will allow the speed of sound to be calculated from the gradient of the best-t straight line (which 

should go through the origin).

Timing pulses of sound over smaller distances requires small time intervals to be recorded with precision. It is possible to automate 

the process using electronic timers and / or data loggers. This equipment would allow, for example, the speed of a sound wave 

along a metal rod or through water to be investigated.  

2. inDirect metHODs
Since c = fλ , the speed of sound can be calculated if we measure a sound’s frequency and wavelength.

Frequency measurement

a) A microphone and a cathode ray oscilloscope (CRO) [page 116] can display a graph of the oscillations of a sound wave. 

Appropriate measurements from the graph allow the time period and hence the frequency to be calculated.

b) Stroboscopic techniques (e.g. ashing light of known frequency) can be used to measure the frequency of the vibrating object 

(e.g. a tuning fork) that is the source of the sound.

c) Frequency of sound can be controlled at source using a known frequency source (e.g. a standard tuning fork) or a calibrated 

electronic frequency generator.  

d) Comparisons can also be made between the unknown frequency and a known frequency. 

Wavelength measurement

a) The interference of waves (see page 40) can be employed to nd the path difference between consecutive positions of 

destructive interference. The path difference between these two situations will be λ

path B

source of
frequency  f

detector (microphone
and cathode ray oscilloscope (CRO))

S

D

path A

1
2

*

λ

b) Standing waves (see page 48) in a gas can be employed to nd the location of adjacent nodes. The positions in an enclosed tube 

can be revealed either:

• in the period pattern made by dust in the tube

• electronically using a small movable microphone.

c) A resonance tube (see page 49) allows the column length for different maxima to be recorded. The length distance between 

adjacent maxima will be λ
2
 .

3. factOrs tHat affect tHe speeD Of sOunD
Factors include:

• Nature of material

• Density

• Temperature (for an ideal gas, c ∝√T)

• Humidity (for air).
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intensity
The sound intensity, I, is the amount of energy that a sound wave brings to a unit area every second. The units of sound 

intensity are W m 2. 

It depends on the amplitude of the sound. A more intense sound (one that is louder) must have a larger amplitude.

Intensity ∝ (amplitude)2

This relationship between intensity and amplitude is true for all waves.
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I ∝ A2

time

louder sound 

of same pitch

inVerse square law Of raDiatiOn
As the distance of an observer from a point source of light

increases, the power received by the observer will decrease 

as the energy spreads out over a larger area. A doubling of 

distance will result in the reduction of the power received to a 

quarter of the original value.

area A

area 4A

The surface area A of a sphere of radius r is calculated using:

A = 4πr
2

If the point source radiates a total power P in all directions, 

then the power received per unit area (the intensity I) at a 

distance r away from the point source is:

I =
P_____

4πr
2

For a given area of receiver, the intensity of the received 

radiation is inversely proportional to the square of the distance 

from the point source to the receiver. This is known as the 

inverse square law and applies to all waves.

I ∝ x
2

waVefrOnts anD rays
As introduced on page 35, waves can be described in terms of 

the motion of a wavefront and/or in terms of rays.

wavefront

point source

of wave energy

rays spreading out

A ray is the path taken by the wave energy as it travels out 

from the source. 

A wavefront is a surface joining neighbouring points 

where the oscillations are in phase with one another. In two 

dimensions, the wavefront is a line and in one dimension, the 

wavefront is a point.
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interference Of waVes
When two waves of the same type meet, they interfere

and we can work out the resulting wave using the principle 

of superposition. The overall disturbance at any point and 

at any time where the waves meet is the vector sum of the 

disturbances that would have been produced by each of the 

individual waves. This is shown below.

(a) wave 1

(b) wave 2

(c) wave 1 + wave 2 = wave 3

0

0

0

t / s

t / s

t / s

y
1

 /
 u

n
it

y
2

 /
 u

n
it

y
 /

 u
n

it

Wave superposition

If the waves have the same amplitude and the same 

frequency then the interference at a particular point can be 

constructive or destructive.

graphs

wave 1 displacement (at P)

wave 2 displacement (at P)

resultant displacement (at P)

constructive destructive

time

time

time

A

A

2A

time

time

time

zero result

tecHnical language
Constructive interference takes place when the two waves 

are ‘in step’ with one another – they are said to be in phase. 

There is a zero phase difference between them. Destructive 

interference takes place when the waves are exactly ‘out of 

step’ – they are said to be out of phase. There are several 

different ways of saying this. One could say that the phase 

difference is equal to ‘half a cycle’ or ‘180 degrees’ or ‘π radians’.

Interference can take place if there are two possible routes for 

a ray to travel from source to observer. If the path difference 

between the two rays is a whole number of wavelengths, then 

constructive interference will take place.

path difference = n λ → constructive

path difference = (n +
1
2

) λ → destructive

n = 0, 1, 2, 3 . . .

For constructive or destructive interference to take place, the 

sources of the waves must be phase linked or coherent.

superpOsitiOn Of waVe pulses
Whenever wave pulses meet, the principle of superposition applies: At any instant in time, the net displacement that results from 

different waves meeting at the same point in space is just the vector sum of the displacements that would have been produced by 

each individual wave. y
overall

= y
1
+ y

2
+ y

3
 etc.

pulse P

a)  i)

 ii)

iii)

A

pulse Q

P + Q = 2A

A

pulse Q

A

pulse P

A

b)  i)

 ii)

iii)

P + Q = A A = 0

A pulse Q

pulse P A

A

pulse Q pulse P

A

examples Of interference
Water waves

A ripple tank can be used to view the interference of water 

waves. Regions of large-amplitude waves are constructive 

interference. Regions of still water are destructive interference. 

Sound

It is possible to analyse any noise in terms of the component 

frequencies that make it up. A computer can then generate 

exactly the same frequencies but of different phase. This 

‘antisound’ will interfere with the original sound. An observer in 

a particular position in space could have the overall noise level 

reduced if the waves superimposed destructively at that position. 

Light

The colours seen on the surface of a soap bubble are a result 

of constructive and destructive interference of two light 

rays. One ray is reected off the outer surface of the bubble 

whereas the other is reected off the inner surface.



41WAVES

brewster’s law

A ray of light incident on the boundary between two media 

will, in general, be reected and refracted. The reected ray 

is always partially plane-polarized. If the reected ray and 

the refracted ray are at right angles to one another, then the 

reected ray is totally plane-polarized. The angle of incidence 

for this condition is known as the polarizing angle

θi

θr

incident ray 
is unpolarized

reected ray is totally 
plane-polarized

medium 1 (vacuum) 
medium 2 (water)

transmitted ray 
is partially polarized

represents electric eld oscillation into the paper
represents electric eld oscillation in the plane of the paper

θ
i
+ θ

r
= 90°

Brewster’s law relates the refractive index of medium 2, n, to 

the incident angle θ
i
:

n =
sin θ

i_____

sin θ
r

=
sin θ

i_____

cos θ
i

= tan θ
i

malus’s law 

When plane-polarized light is incident on an analyser, its 

preferred direction will allow a component of the light to be 

transmitted:

analyser’s

preferred

direction

analyser

plane-polarized light 

seen head-on with

electric eld amplitude, 0

θ

0

transmitted component of 

electric eld after analyser 

= 0cosθ

θ

0cos θ



The intensity of light is proportional to the (amplitude)2. 

Transmitted intensity I ∝ E2

∴ I ∝ E
0

2 cos2θ as expressed by Malus’s law:

I = I
0

cos2θ

I is transmitted intensity of light in W m 2

I
0
 is incident intensity of light in W m 2

θ is the angle between the plane of vibration and the analyser’s 

preferred direction

Optically actiVe substances

An optically active substance is one that rotates the 

plane of polarization of light that passes through it. Many 

solutions (e.g. sugar solutions of different concentrations) are 

opticallyactive. 

θ

original

plane of

vibration

optically active

substance

plane of

vibration 

rotated

through 

angle θ

poo

pOlarizeD ligHt

Light is part of the electromagnetic spectrum. It is made up of 

oscillating electric and magnetic elds that are at right angles 

to one another (for more details see page 132). They are 

transverse waves; both elds are at right angles to the direction 

of propagation. The plane of vibration of electromagnetic 

waves is dened to be the plane that contains the electric eld 

and the direction of propagation. 

direction of electric 
eld oscillationdirection 

of
magnetic

eld
oscillation

plane vibration of 
EM wave containing 
electric oscillations

distance 
along 
the wave

There are an innite number of ways for the elds to be oriented. 

Light (or any EM wave) is said to be unpolarized if the plane 

of vibration varies randomly whereas plane-polarized light 

has a xed plane of vibration. The diagrams below represent the 

electric elds of light when being viewed ‘head on’.

polarized light: over a

period of time, the electric

eld only oscillates in 

one direction

unpolarized light: over a

period of time, the electric

eld oscillates in 

random directions

A mixture of polarized light and unpolarized light is partially 

plane-polarized. If the plane of polarization rotates uniformly 

the light is said to be circularly polarized. 

Most light sources emit unpolarized light whereas radio waves, radar 

and laboratory microwaves are often plane-polarized as a result of 

the processes that produce the waves. Light can be polarized as a 

result of reection or selective absorption. In addition, some crystals 

exhibit double refraction or birefringence where an unpolarized 

ray that enters a crystal is split into two plane-polarized beams that 

have mutually perpendicular planes of polarization.

A polarizer is any device that produces plane-polarized light 

from an unpolarized beam. An analyser is a polarizer used to 

detect polarized light.

Polaroid is a material which preferentially absorbs any light in 

one particular plane of polarization allowing transmission only 

in the plane at 90° to this.

a)

trans-
parent

indicates the
preferred directions

b)

zero transmission
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pOlarOiD sunglasses
Polaroid is a material containing long chain molecules. The 

molecules selectively absorb light that have electric elds 

aligned with the molecules in the same way that a grid of 

wires will selectively absorb microwaves.

electric

eld

electric

eld

grid

viewed

head on

grid

viewed

head on

absorption

transmission

When worn normally by a person standing up, Polaroid dark 

glasses allow light with vertically oscillating electric elds to 

be transmitted and absorb light with horizontally oscillating 

electric elds.

• The absorption will mean that the overall light intensity is

reduced.

• Light that has reýected from horizontal surfaces will be

horizontally plane-polarized to some extent.

• Polaroid sunglasses will preferentially absorb reýected light,

reducing ‘glare’ from horizontal surfaces.

cOncentratiOn Of sOlutiOns 
For a given optically active solution, the angle θ through 

which the plane of polarization is rotated is proportional to:

• The length of the solution through which the plane-

polarized light passes.

• The concentration of the solution.

A polarimeter is a device that measures θ for a given solution. 

It consists of two polarizers (a polarizer and an analyser) that 

are initially aligned. The optically active solution is introduced 

between the two and the analyser is rotated to nd the 

maximum transmitted light.

liquiD-crystal Displays (lcDs)
LCDs are used in a wide variety of different applications that 

include calculator displays and computer monitors. The liquid 

crystal is sandwiched between two glass electrodes and is 

birefringent. One possible arrangement with crossed polarizers 

surrounding the liquid crystal is shown below:

reector

liquid

crystal

electrodes

etched into glass

polarizers

light enters the

LCD from the front

• With no liquid crystal between the electrodes, the second

polarizer would absorb all the light that passed through the 

rst polarizer. The screen would appear black.

• The liquid crystal has a twisted structure and, in the absence

of a potential difference, causes the plane of polarization to 

rotate through 90°. 

• This means that light can pass through the second polarizer, 

reach the reecting surface and be transmitted back along its 

original direction.

• With no pd between the electrodes, the LCD appears light.

• A pd across the liquid crystal causes the molecules to 

align with the electric eld. This means less light will be 

transmitted and this section of the LCD will appear darker.

• The extent to which the screen appears grey or black can be

controlled by the pd 

• Coloured ålters can be used to create a colour image.

• A picture can be built up from individual picture elements.

furtHer pOlarizatiOn examples
Only transverse waves can be polarized. Page 41 has 

concentrated on the polarization of light but all EM waves that 

are transverse are able, in principle, to be polarized.  

• Sound waves, being longitudinal waves, cannot be polarized.

• The nature of radio and TV broadcasts means that the signal is

often polarized and aerials need to be properly aligned if they 

are to receive the maximum possible signal strength.

• Microwave radiation (with a typical wavelength of a few

cm) can be used to demonstrate wave characteristics in the 

laboratory. Polarization can be demonstrated using a grid of 

conducting wires. If the grid wires are aligned parallel to the 

plane of vibration of the electric eld the microwaves will 

be absorbed. Rotation of the grid through 90° will allow the 

microwaves to be transmitted.

stress analysis
Glass and some plastics become birefringent (see page 41) 

when placed under stress. When polarized white light is 

passed through stressed plastics and then analysed, bright 

coloured lines are observed in the regions of maximum stress.
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reflectiOn anD transmissiOn
In general, when any wave meets the boundary between two 

different media it is partially reected and partially transmitted.

incident ray
normal

reected ray

transmitted ray

medium (1)

medium (2)

medium (2) is optically
denser than medium (1)

types Of reflectiOn
When a single ray of light strikes a smooth mirror it produces a single reected 

ray. This type of ‘perfect’ reection is very different to the reection that takes 

place from an uneven surface such as the walls of a room. In this situation, a 

single incident ray is generally scattered in all directions. This is an example of a 

diffuse reection.

light leaves in 
one direction

light leaves in 
all directions
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We see objects by receiving light that has come from them. Most objects do 

not give out light by themselves so we cannot see them in the dark. Objects 

become visible with a source of light (e.g. the Sun or a light bulb) because diffuse 

reections have taken place that scatter light from the source towards our eyes.

An observer ‘sees’ the painting by

receiving this scattered light.

Light from the

central bulb sets 

o in all directions.

The surfaces of the

picture scatter the

light in all directions.

Our brains are able to work out the location of the object by assuming that rays 

travel in straight lines.

reflectiOn Of twO-DimensiOnal plane waVes
The diagram below shows what happens when plane waves 

are reected at a boundary. When working with rays, by 

convention we always measure the angles between the rays 

and the normal. The normal is a construction line that is 

drawn at right angles to the surface.

incident 
ray reected

ray

incident 
angle i reected

angle r

normal

surface
Law of reection: i = r

law Of reflectiOn
The location and nature of optical images 

can be worked out using ray diagrams and 

the principles of geometric optics. A ray is 

a line showing the direction in which light 

energy is propagated. The ray must always 

be at right angles to the wavefront. The 

study of geometric optics ignores the wave 

and particle nature of light.

wavefront

point source

of light

rays spreading out

When a mirror reection takes place, the 

direction of the reected ray can be predicted 

using the laws of reection. In order to 

specify the ray directions involved, it is usual 

to measure all angles with respect to an 

imaginary construction line called the normal. 

For example, the incident angle is always taken 

as the angle between the incident ray and the 

normal. The normal to a surface is the line at 

right angles to the surface as shown below.

normal

incident ray

reected ray

i
r

The laws of reection are that:

• the incident angle is equal to the reýected

angle

• the incident ray, the reýected ray and

the normal all lie in the same plane (as 

shown in the diagram).

The second statement is only included in 

order to be precise and is often omitted. It 

should be obvious that a ray arriving at a 

mirror (such as the one represented above) 

is not suddenly reected in an odd direction 

(e.g. out of the plane of the page).

wv hvo – o
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refractiVe inDex anD snell’s law

Refraction takes place at the boundary between two media. 

In general, a wave that crosses the boundary will undergo a 

change of direction. The reason for this change in direction is  

the change in wave speed that has taken place.

As with reection, the ray directions are always specied by 

considering the angles between the ray and the normal. If a 

ray travels into an optically denser medium (e.g. from air into 

water), then the ray of light is refracted towards the normal. 

If the ray travels into an optically less dense medium then the 

ray of light is refracted away from the normal.

incident ray

normal

less dense medium

more dense medium

refracted 

ray

ray refracted 

towards normal

incident ray

normal

more dense medium

less dense medium

ray refracted away

from the normal

refracted 

ray

Snell’s law allows us to work out the angles involved.  

When a ray is refracted between two different media, 

the ratio 
sin(angle of incidence)________________
 sin(angle of refraction)

 is a constant. 

The constant is called the refractive index n between the two 

media. This ratio is equal to the ratio of the speeds of the 

waves in the two media.

sin i_____
sin r

= n

If the refractive index for a particular substance is given as a 

particular number and the other medium is not mentioned 

then you can assume that the other medium is air (or to be 

absolutely correct, a vacuum). Another way of expressing this 

is to say that the refractive index of air can be taken to  

be 1.0. 

For example the refractive index for a type of glass might be 

given as

n
glass

= 1.34

This means that a ray entering the glass from air with an 

incident angle of 40° would have a refracted angle given by

sin r =
sin 40°_______
 1.34

= 0.4797

∴ r = 28.7°

n
glass

=

n
glass____

n
air

=

sin θ
air_______

sin θ
glass

=

V
air_____

V
glass

examples

1. Parallel-sided block

A ray will always leave a parallel-sided block travelling in a 

parallel direction to the one with which it entered the block. 

The overall effect of the block has been to move the ray 

sideways. An example of this is shown below.

ray leaves block

parallel to incident ray

incident ray

glass

2. Ray travelling between two media

If a ray goes between two different media, the two individual 

refractive indices can be used to calculate the overall refraction 

using the following equation

n
1
 sin θ

1
= n

2
 sin θ

2
 or 

n

n
2

=
sin θ

2_____
sin θ

n
1
 refractive index of medium 1

θ
1
 angle in medium 1

n
2
 refractive index of medium 2

θ
2
 angle in medium 2

Suppose a ray of light is shone into a sh tank that contains 

water. The refraction that takes place would be calculated as 

shown below:

1st refraction:

n
glass

=
sin a_____
sin b

2nd refraction:

n
glass

× sin b =

n
water

× sin c

n
glass_____

n
water

=
sin c_____
sin b

Overall the refraction is from incident angle a to refracted 

angle c. 

i.e. n
overall

=
sin a_____
sin c

=
sin a_____
sin b

×
sin b_____
sin c

= n
water

s’  d v d

glass
(nglass = 1.6)

water
(nwater = 1.3)

air
(nair = 1.0)

a
b

c

refractiOn Of plane waVes

The reason for the change in direction in refraction is the change 

in speed of the wave.

normal
medium 1
(e.g. air)

medium 2 (e.g. glass) r

i
boundary

refracted ray
wavelength smaller
since speed reduced

Snell’s law (an experimental law of refraction) states that 

the ratio sin i____
sin r

= constant, for a given frequency.

The ratio is equal to the ratio of the speeds in the different media 

n
1___

n
2

=

sin θ
2______

 sin θ
1

=

V
2___

V
1

← speed of wave in medium 2

← speed of wave in medium 1



45WAVES

tOtal internal reflectiOn anD critical angle
In general, both reection and refraction can happen at the 

boundary between two media. 

It is, under certain circumstances, possible to guarantee 

complete (total) reection with no transmission at all. 

This can happen when a ray meets the boundary and it is 

travelling in the denser medium. 

partial
transmission

total 
reection

grazing 
emergence

source
O

n1
n2

n1< n2

3

2
1

θ1

θc

θ2

Ray1 This ray is partially reected and partially refracted.

Ray2 This ray has a refracted angle of nearly 90°. The 

critical ray is the name given to the ray that has a 

refracted angle of 90°. The critical angle is the angle 

of incidence θ
c
 for the critical ray.

Ray3 This ray has an angle of incidence greater than the critical 

angle. Refraction cannot occur so the ray must be totally 

reected at the boundary and stay inside medium 2. The 

ray is said to be totally internally reected

The critical angle can be worked out as follows. For the critical ray,

n
1
 sin θ

1
= n

2
 sin θ

2

θ
1
= 90°

θ
2
= θ

c

∴ sin θ
c
=

1___
n

2

examples
1. What a sh sees under water

At greater than the critical angle, the surface

of the water acts like a mirror. Objects inside

the water are seen by reection.

entire world outside water is

visible in an angle of twice the

critical angle

critical angle c

2. Prismatic reectors

A prism can be used in place of a mirror. If the light strikes the 

surface of the prism at greater than the critical angle, it must 

be totally internally reected. 

Prisms are used in many optical devices. Examples include:

• periscopes – the double reection allows the user to see 

over a crowd.

• binoculars – the double reection means that the 

binoculars do not have to be too long

• SLR cameras – the view through the lens is reected up to 

the eyepiece.

periscope
The prism arrangement delivers the 
image to the eyepiece the right way 
up. By sending the light along the 
instrument three times, it also allows 
the binoculars to
be shorter.

binoculars

objective lens

eyepiece

lens

ro d  

metHODs fOr Determining refractiVe inDex 

experimentally

Part of
ray identied

Part of ray in
block can be inferred
from measurements

Part of ray identied
in several positions

glass
block

semi-circular
glass block

centre

ray heading towards 
centre will not be
refracted entering the block

1. Locate paths taken by different rays either by sending a ray 

through a solid and measuring its position or aligning objects 

by eye. Uncertainties in angle measurement are dependent on 

protractor measurements. (See diagrams on left)

2. Use a travelling microscope to measure real and apparent 

depth and apply following formula:

n =

real depth of object_______________________
apparent depth of object

3. Very accurate measurements of angles of refraction can be 

achieved using a prism of the substance and a custom piece 

of equipment call a spectrometer
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DiffractiOn

When waves pass through apertures they tend to spread out. 

Waves also spread around obstacles. This wave property is called 

diffraction

d geometric 

shadow region

geometric

shadow region

d < λ

d geometric 

shadow

region

geometric

shadow

region

d ≈ λ

d
geometric 

shadow

region

d > λ

geometric

shadow

region

d

geometric

shadow region
d ≈ λ

diraction more

important with

smaller

obstacles

d > λ

d

geometric

shadow region

λ

λ

λ

λ

λ

d = width of obstacle/gap 

Diffraction  wave energy is received in geometric shadow region.

There are some important points to note from these diagrams.

• Diffraction becomes relatively more important when the 

wavelength is large in comparison to the size of the aperture 

(or the object). 

• The wavelength needs to be of the same order of magnitude 

as the aperture for diffraction to be noticeable.

practical significance Of DiffractiOn

Whenever an observer receives information from a source 

of electromagnetic waves, diffraction causes the energy to 

spread out. This spreading takes place as a result of any 

obstacle in the way and the width of the device receiving the 

electromagnetic radiation. Two sources of electromagnetic 

waves that are angularly close to one another will both spread 

out and interfere with one another. This can affect whether or 

not they can be resolved (see page 101). 

Diffraction effects mean that it is impossible ever to see atoms 

because they are smaller than the wavelength of visible light, 

meaning that light will diffract around the atoms. It is, however, 

possible to image atoms using smaller wavelengths. Practical 

devices where diffraction needs to be considered include:

• CDs and DVDs – the maximum amount of information that

can be stored depends on the size and the method used for 

recording information.

• The electron microscope – resolves items that cannot be

resolved using a light microscope. The electrons have 

an effective wavelength that is much smaller than the 

wavelength of visible light (see page 127).

• Radio telescopes – the size of the dish limits the maximum

resolution possible. Several radio telescopes can be linked 

together in an array to create a virtual radio telescope with 

a greater diameter and with a greater ability to resolve 

astronomical objects. (See page 181)

Do

examples Of DiffractiOn

Diffraction provides the reason why we can hear something 

even if we can not see it.

If you look at a distant street light at night and then squint 

your eyes the light spreads sideways – this is as a result of 

diffraction taking place around your eyelashes! (Needless to 

say, this explanation is a simplication.)

basic ObserVatiOns

Diffraction is a wave effect. The objects involved (slits, apertures, 

etc.) have a size that is of the same order of magnitude as the 

wavelength.

1st minimum

intensity
There is a central maximum 
intensity.
Other maxima occur roughly
halfway between the minima.

Diraction of a single slit.

angle

As the angle increases, 
the  intensity of the 
maxima decreases.
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principles Of tHe twO-sOurce interference 

pattern

Two-source interference is simply another application of 

the principle of superposition, for two coherent sources having 

roughly the same amplitude.

Two sources are coherent if:

• they have the same frequency

• there is a constant phase relationship between the two sources.

regions where waves are in phase:

constructive interference

S1 S2

destructive 
interference

Two dippers in water moving together are coherent sources. This 

forms regions of water ripples and other regions with no waves.

Two loudspeakers both connected to the same signal generator 

are coherent sources. This forms regions of loud and soft sound.

A set-up for viewing two-source interference with light 

is shown below. It is known as Young’s double slit

experiment. A monochromatic source of light is one that 

gives out only one frequency. Light from the twin slits (the 

sources) interferes and patterns of light and dark regions, 

called fringes, can be seen on the screen.

source
slit

monochromatic
light source

twin source
slits (less than 5 mm)

separation
of slits

region in which
superposition occurs

possible
screen
positions 

1 m0.1 m

S0

S1

S2

Se-p 2

The use of a laser makes the set-up easier.

laser double

slit

screen

The experiment results in a regular pattern of light and dark 

strips across the screen as represented below.

intensity distribution view seen

intensity
fringe width, d

dark darkbright bright

Se-p 1

matHematics

The location of the light and dark fringes can be mathematically 

derived in one of two ways. The derivations do not need to be 

recalled.

Method 1

The simplest way is to consider two parallel rays setting off from 

the slits as shown below.

parallel rays

S1

S2

d path dierence 

p= dsin θ
θ

θ

If these two rays result in a bright patch, then the two rays 

must arrive in phase. The two rays of light started out in phase 

but the light from source 2 travels an extra distance. This extra 

distance is called the path difference. 

Constructive interference can only happen if the path 

difference is a whole number of wavelengths. Mathematically, 

Path difference = n λ

[where n is an integer – e.g. 1, 2, 3 etc.]

From the geometry of the situation

Path difference = d sin θ

In other words n λ = d sin θ

Method 2

If a screen is used to make the fringes visible, then the rays 

from the two slits cannot be absolutely parallel, but the 

physical set-up means that this is effectively true.

sin θ =
p
s

tan θ = 
X
D

If θ is small sin θ ≃ tan θ

so
p
s = 

X
D

∴ p =
Xs___
D

For constructive 

interference:

p = nλ

∴ nλ =
X

n
s

____
D

∴ X
n
=

nλD_____
s

fringe separation d = X
n + 1

X
n
=

λD___
s

∴ s =
λD___
d

This equation only applies when the angle is small.

Example

Laser light of wavelength 450 nm is shone on two slits that 

are 0.1 mm apart. How far apart are the fringes on a screen 

placed 5.0 m away?

d =
λ D_____
s =

4.5 × 10 7
× 5______________

1.0 × 10 4
= 0.0225 m = 2.25 cm

to-o  o v

θ

θ

S1

S2

s

X

2

D

p

P

N
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stanDing waVes
A special case of interference occurs when two waves meet 

that are:

• of the same amplitude

• of the same frequency

• travelling in opposite directions.

In these conditions a standing wave will be formed. 

The conditions needed to form standing waves seem quite 

specialized, but standing waves are in fact quite common. They 

often occur when a wave reects back from a boundary along 

the route that it came. Since the reected wave and the incident 

wave are of (nearly) equal amplitude, these two waves can 

interfere and produce a standing wave.

Perhaps the simplest way of picturing a standing wave would 

be to consider two transverse waves travelling in opposite 

directions along a stretched rope. The series of diagrams below 

shows what happens.

resultant wave

wave 1 moves →

wave 2 moves ←

di
sp

la
ce

m
en

t
di

sp
la

ce
m

en
t

di
s

t
di

sp
la

ce
m

en
t

di
sp

la
ce

m
en

t

total

wave 1
total

wave 2

wave 2

wave 2
wave 1

total

total

total

distance

distance

distance

distance

distance

a)

b)

c)

d)

e)

Production of standing waves

to
ta

l d
is

p
la

ce
m

e
n

t

antinode antinode

node node node node

distance

A standing wave – the pattern remains xed

There are some points on the rope that are always at rest. 

These are called the nodes. The points where the maximum 

movement takes place are called antinodes. The resulting 

standing wave is so called because the wave pattern remains 

xed in space – it is its amplitude that changes over time. A 

comparison with a normal (travelling) wave is given below.

Stationary wave Normal (travelling) 

wave

Amplitude All points on the 

wave have different 

amplitudes. The 

maximum amplitude 

is 2A at the antinodes. 

It is zero at the nodes.

All points on the 

wave have the same 

amplitude.

Frequency All points oscillate 

with the same 

frequency.

All points oscillate 

with the same 

frequency.

Wavelength This is twice the 

distance from one 

node (or antinode) 

to the next node (or 

antinode).

This is the shortest 

distance (in metres) 

along the wave 

between two points 

that are in phase with 

one another.

Phase All points between 

one node and the 

next node are moving 

in phase.

All points along a 

wavelength have 

different phases.

Energy Energy is not 

transmitted by the 

wave, but it does have 

an energy associated 

with it.

Energy is transmitted 

by the wave.

Although the example left involved transverse waves on a rope, 

a standing wave can also be created using sound or light waves. 

All musical instruments involve the creation of a standing 

sound wave inside the instrument. The production of laser light 

involves a standing light wave. Even electrons in hydrogen 

atoms can be explained in terms of standing waves.

A standing longitudinal wave can be particularly hard to 

imagine. The diagram below attempts to represent one 

example – a standing sound wave.

antinode antinode
zero

movement

etc.etc.
node nodemax.

movement

A longitudinal standing wave

n d odo o d (o) v
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bOunDary cOnDitiOns
The boundary conditions of the system specify the conditions 

that must be met at the edges (the boundaries) of the system 

when standing waves are taking place. Any standing wave that 

meets these boundary conditions will be a possible resonant 

mode of the system.

1. Transverse waves on a string

If the string is xed at each end, the ends of the string cannot 

oscillate. Both ends of the string would reect a travelling wave 

and thus a standing wave is possible. The only standing waves 

that t these boundary conditions are ones that have nodes at 

each end. The diagrams below show the possible resonant modes.

N = node

A = antinode
l

A NN

λ0 = 2l

1st harmonic = f0

A N A N A

A

A N A

λ' = l,  f ' = 2f0

λ" =  l f" = 3f0
2

3

λ"' =  f"' = 4f0
l

2

Harmonic modes for a string

The resonant mode that has the lowest frequency is called the 

fundamental or the rst harmonic. Higher resonant modes 

are called harmonics. Many musical instruments (e.g. piano, 

violin, guitar etc.) involve similar oscillations of metal ‘strings’.

2. Longitudinal sound waves in a pipe

A longitudinal standing wave can be set up in the column of air 

enclosed in a pipe. As in the example above, this results from 

the reections that take place at both ends.

As before, the boundary conditions determine the standing 

waves that can exist in the tube. A closed end must be a 

displacement node. An open end must be an antinode. Possible 

standing waves are shown for a pipe open at both ends and a 

pipe closed at one end.

N = node
A = antinodel

A

A

N

N A AN

A N A AN A N

A

1st harmonic

frequency = f0

λ0 = 2l

λ'= l

f '= 2f0

λ"=
2l

3

f"= 3f0

Harmonic modes for a pipe open at both ends

l

N A

N N AA

N N N AAA

N = node
A = antinode

1st harmonic

frequency = f0

λ0 = 4l

λ"=
4l

3

f"= 5f0

λ'=
4l

3

f '= 3f0

Harmonic modes for a pipe closed at one end

Musical instruments that involve a standing wave in a column of 

air include the ute, the trumpet, the recorder and organ pipes.

example
An organ pipe (open at one end) is 1.2 m long. 

Calculate its fundamental frequency. 

The speed of sound is 330 m s 1

l = 1.2 m ∴
λ

4
= 1.2 m (rst harmonic)

∴ λ = 4.8 m

v = fλ

f =
330____
4.8

≃ 69 Hz

resOnance tube

Tuning fork of

known frequency

Resonance will occur

at dierent values of x

The distance between

adjacent resonance lengths=

N

A

x

2
λ

bod odo
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b) On the diagram above

(i) draw an arrow to indicate the direction in which  

the marker is moving. [1]

(ii) indicate, with the letter A, the amplitude of  

the wave. [1]

(iii) indicate, with the letter λ, the wavelength of the 

wave. [1]

(iv) draw the displacement of the string a time T
4
  later, 

where T is the period of oscillation of the wave. 

Indicate, with the letter N, the new position of the 

marker. [2]

The wavelength of the wave is 5.0 cm and its speed is 10 cm s 1

c) Determine

(i) the frequency of the wave. [1]

(ii) how far the wave has moved in T
4
 s. [2]

Interference of waves

d) By reference to the principle of superposition, explain 

what is meant by constructive interference. [4]

The diagram below (not drawn to scale) shows an 

arrangement for observing the interference pattern  

produced by the light from two narrow slits S
1
 and S

2

monochromatic

light source

double slit

x

single slit

screen

M

S1

S2

d

yn

D

O

P

θ ϕ

The distance S
1
S

2
 is d, the distance between the double slit 

and screen is D and D≫ d such that the angles θ and ϕ shown 

on the diagram are small. M is the mid-point of S
1
S

2
 and it is 

observed that there is a bright fringe at point P on the screen, 

a distance y
n
 from point O on the screen. Light from S

2
 travels 

a distance S
2
X further to point P than light from S

1

e) (i) State the condition in terms of the distance S
2
X  

and the wavelength of the light λ, for there to be  

a bright fringe at P. [2]

(ii) Deduce an expression for θ in terms of S
2
X and d. [2]

(iii) Deduce an expression for ϕ in terms of D and y
n
. [1]

For a particular arrangement, the separation of the slits is 

1.40 mm and the distance from the slits to the screen is 

1.50 m. The distance y
n
 is the distance of the eighth bright 

fringe from O and the angle θ = 2.70 × 10 3 rad.

f) Using your answers to (e) to determine

(i) the wavelength of the light. [2]

(ii) the separation of the fringes on the screen. [3]

5. A bright source of light is viewed through two polarisers 

whose preferred directions are initially parallel. Calculate the 

angle through which one sheet should be turned to reduce 

the transmitted intensity to half its original value.

1. A surfer is out beyond the breaking surf in a deep-water 

region where the ocean waves are sinusoidal in shape. The 

crests are 20 m apart and the surfer rises a vertical distance of 

4.0 m from wave trough to crest, in a time of 2.0 s. What is 

the speed of the waves?

A. 1.0 m s 1 B. 2.0 m s 1

C. 5.0 m s 1 D. 10.0 m s 1

2. A standing wave is established in air in a pipe with one closed 

and one open end.

X

The air molecules near X are

A. always at the centre of a compression.

B. always at the centre of a rarefaction.

C. sometimes at the centre of a compression and sometimes 

at the centre of a rarefaction.

D. never at the centre of a compression or a rarefaction.

3. This question is about sound waves.

A sound wave of frequency 660 Hz passes through air.  The 

variation of particle displacement withdistance along the 

wave at one instant of time is shown below.

0.5

 0.5

0
0 distance / mdisplacement /mm

a) State whether this wave is an example of a longitudinal or 

a transverse wave. [1]

b) Using data from the above graph, deduce for this sound 

wave,

(i) the wavelength. [1]

(ii) the amplitude. [1]

(iii) the speed. [2]

4. The diagram below represents the direction of oscillation of a 

disturbance that gives rise to a wave.

a) By redrawing the diagram, add arrows to show the 

direction of wave energy transfer to illustrate the 

difference between

(i) a transverse wave and [1]

(ii) a longitudinal wave. [1]

A wave travels along a stretched string. The diagram below 

shows the variation with distance along the string of the 

displacement of the string at a particular instant in time. A 

small marker is attached to the string at the point labelled 

M. The undisturbed position of the string is shown as a 

dotted line.

direction of wave travel

M

ib qo – v
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Eecc ce  C' 

ConsErvation of ChargE
Two types of charge exist – positive and negative. Equal amounts 

of positive and negative charge cancel each other. Matter that 

contains no charge, or matter that contains equal amounts of 

positive and negative charge, is said to be electrically neutral. 

Charges are known to exist because of the forces that exist 

between all charges, called the electrostatic force: like 

charges repel, unlike charges attract.

F

F

F

F

F

F

F

F

+

-

-

-

-

+

+

+

A very important experimental observation is that charge is 

always conserved. 

Charged objects can be created by friction. In this process 

electrons are physically moved from one object to another. 

In order for the charge to remain on the object, it normally 

needs to be an insulator.

before

neutral hair
neutral

comb

electrons have been transferred

from hair to comb

after

positive hair

negative

comb

attraction

+

+

--
-

-
-
-
-

+

+

+

The total charge before any process must be equal to the 

total charge afterwards. It is impossible to create a positive 

charge without an equal negative charge. This is the law of 

conservation of charge.

Coulomb’s law
The diagram shows the force between two point charges that 

are far away from the inuence of any other charges.

distance
r

F

force

F

forceq2
charge

q1
charge

The directions of the forces are along the line joining the 

charges. If they are like charges, the forces are away from 

each other – they repel. If they are unlike charges, the forces 

are towards each other – they attract.

Each charge must feel a force of the same size as the force on 

the other one.

Experimentally, the force is proportional to the size of both 

charges and inversely proportional to the square of the 

distance between the charges.

F =

kq
1
q

2_
r2

= k 
q

1
q

2_
r2

This is known as Coulomb’s law and the constant k is called 

the Coulomb constant. In fact, the law is often quoted in 

a slightly different form using a different constant for the 

medium called the permittivity, ε

distance between 

the charges

F = 
q1 q2

    4πε0
2

force between

two point charges

value of first charge
value of second charge

constants permittivity of free

space (a constant)

k = 
1_

4πε
0

If there are two or more charges near another charge, the 

overall force can be worked out using vector addition.

force on qA (due to qC)

overall force on qA
(due to qB and qC)

qC

qA

qB

force on qA (due to qB)

Ve  f ee fe

ConduCtors and insulators
A material that allows the ow of charge through it is called an 

electrical conductor. If charge cannot ow through a material 

it is called an electrical insulator. In solid conductors the ow 

of charge is always as a result of the ow of electrons from atom 

to atom.

Electrical conductors Electrical insulators

brass acetate

dry wood

glass

ceramics

5 E l E C t r i C i t y  a n d  m a g n E t i s m
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Eecc e

ElECtriC fiElds – dEfinition

A charge, or combination of charges, is said to produce an 

electric eld around it. If we place a test charge at any point 

in the eld, the value of the force that it feels at any point will 

depend on the value of the test charge only.

A test charge placed at B

would feel this force.

A

A test charge placed at A

would feel this force.

q1
B

A test charge would feel a different force at different points 

around a charge q
1

In practical situations, the test charge needs to be small so that it 

doesn’t disturb the charge or charges that are being considered. 

The denition of electric eld, E, is

E =

F
q

2

= force per unit positive point test charge.

Coulomb’s law can be used to relate the electric eld around a 

point charge to the charge producing the eld.

E =

q
1_

4πε
0
r2

When using these equations you have to be very careful: 

• not to muddle up the charge producing the eld and the 

charge sitting in the eld (and thus feeling a force)

• not to use the mathematical equation for the eld around a 

point charge for other situations (e.g. parallel plates).

rEprEsEntation of ElECtriC fiElds

This is done using eld lines.

At any point in a eld:

• the direction of eld is represented by the direction of the 

eld lines closest to that point

• the magnitude of the eld is represented by the number of 

eld lines passing near that point.

The direction of the
force here must be
as shown.

The eld here 
must be strong 
as the eld lines
are close
together.

The eld here 
must be 
weak as the
eld lines
are far apart.

F

Field around a positive point charge

The resultant electric eld at any position due to a collection of 

point charges is shown to the right. 

The parallel eld lines between two plates mean that the electric 

eld is uniform.

Electric eld lines:

• begin on positive charges and end on negative charges

• never cross

• are close together when the eld is strong.

(radial eld)

two opposite
charges

two like
charges

a negatively
charged
conducting
sphere

+ +

two oppositely charged
parallel metal plates

parallel eld lines
in the centre

+   +   +  +  +    +    +  + +   +  

–   –   –   –   –   –   –   –   –   –

                             Patterns of electric elds
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EnErgy diffErEnCE in an ElECtriC fiEld
When placed in an electric eld, a charge feels a force. This 

means that if it moves around in an electric eld work will be 

done. As a result, the charge will either gain or lose electric 

potential energy. Electric potential energy is the energy that 

a charge has as a result of its position in an electric eld. This 

is the same idea as a mass in a gravitational eld. If we lift a 

mass up, its gravitational potential energy increases. If the 

mass falls, its gravitational potential energy decreases. In the 

example below a positive charge is moved from position A

to position B. This results in an increase in electric potential 

energy. Since the eld is uniform, the force is constant. This 

makes it very easy to calculate the work done.

position of lower electric

potential energy

q
q

force needed to move charge

distance d

potential energy

+ +

Charge moving in an electric eld

Change in electric potential energy = force × distance

= E q × d

See page 52 for a denition of electric eld, E

In the example above the electric potential energy at B is 

greater than the electric potential energy at A. We would 

have to put in this amount of work to push the charge from A

to B. If we let go of the charge at B it would be pushed by the 

electric eld. This push would accelerate it so that the loss in 

electrical potential energy would be the same as the gain in 

kinetic energy.

+

A positive charge released at B will be

accelerated as it travels to point A

B A velocity v+

gain in kinetic energy = loss in electric potential energy

1
2
mv2

= Eqd

mv2
= 2Eqd

∴ v = √2Eqd_
m

ElECtriC potEntial diffErEnCE
In the example on the left, the actual energy difference 

between A and B depended on the charge that was moved. 

If we doubled the charge we would double the energy 

difference. The quantity that remains xed between A and B

is the energy difference per unit charge. This is called the 

potential difference, or pd, between the points.

Potential difference  
=

   energy difference  

between two points per unit charge moved

=
energy difference__

charge
=

work done__
charge

V =
W_
q

The basic unit for potential difference is the joule/coulomb,  

J C 1. A very important point to note is that for a given 

electric eld, the potential difference between any two points 

is a single xed scalar quantity. The work done between these 

two points does not depend on the path taken by the test 

charge. A technical way of saying this is ‘the electric eld is 

conservative’.

units
The smallest amount of negative charge available is the charge 

on an electron; the smallest amount of positive charge is the 

charge on a proton. In everyday situations this unit is far too 

small so we use the coulomb, C. One coulomb of negative 

charge is the charge carried by a total of 6.25 × 1018 electrons.

From its denition, the unit of potential difference (pd) is 

JC 1. This is given a new name, the volt, V. Thus:

1 volt = 1 J C 1

Voltage and potential difference are different words for the 

same thing. Potential difference is probably the better name 

to use as it reminds you that it is measuring the difference 

between two points. 

When working at the atomic scale, the joule is far too big to 

use for a unit for energy. The everyday unit used by physicists 

for this situation is the electronvolt. As could be guessed from 

its name, the electronvolt is simply the energy that would be 

gained by an electron moving through a potential difference 

of 1 volt.

1 electronvolt =  1 volt × 1.6 × 10 19 C

=  1.6 × 10 19 J

The normal SI prexes also apply so one can measure energies 

in kiloelectronvolts (keV) or megaelectronvolts (MeV). The 

latter unit is very common in particle physics.

Exmpe
Calculate the speed of an electron accelerated in a vacuum by 

a pd of 1000 V (energy = 1 KeV).

KE of electron = V × e = 1000 × 1.6 × 10 19

= 1.6 × 10 16 J

1
2
mv2

= 1.6 × 10 16 J

v = 1.87 × 107 m s 1 
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ElECtriCal ConduCtion in a mEtal

Whenever charges move we say that a current is owing. A current is the name 

for moving charges and the path that they follow is called the circuit. Without a 

complete circuit, a current cannot be maintained for any length of time. 

Current ows THROUGH an object when there is a potential difference ACROSS the 

object. A battery (or power supply) is the device that creates the potential difference.

By convention, currents are always represented as the ow of positive charge. Thus 

conventional current, as it is known, ows from positive to negative. Although 

currents can ow in solids, liquids and gases, in most everyday electrical circuits 

the currents ow through wires. In this case the things that actually move are the 

negative electrons – the conduction electrons. The direction in which they move is 

opposite to the direction of the representation of conventional current. As they move 

the interactions between the conduction electrons and the lattice ions means that 

work needs to be done. Therefore, when a current ows, the metal heats up. The 

speed of the electrons due to the current is called their drift velocity

conduction electrons

conventional current, I

metal wire
positive ions

held in place

drift velocity

Electrical conduction in a metal

It is possible to estimate the drift velocity of electrons using the generalized drift 

speed equation. All currents are comprised of the movement of charge-carriers and 

these could be positive or negative; not all currents involve just the movement of 

electrons.  Suppose that the number density of the charge-carriers (the number per 

unit volume that are available to move) is n, the charge on each carrier is q and their 

average speed is v

In a time Δt, 

the average distance moved by a charge-carrier = v × Δt

so volume of charge moved past a point = A × vΔt

so number of charge-carriers moved past a point = n×AvΔt

so charge moved past a point, ΔQ = nAvΔt × q

current I =
∆Q_
∆t

I = nAvq

It is interesting to compare:

• A typical drift speed of an electron: 10 4 m s 1

(5A current in metal conductor of cross section 1 mm2)

• The speeds of the electrons due to their random motion: 106 m s 1

• The speed of an electrical signal down a conductor: approx. 3 × 108 m s 1

CurrEnt

Current is dened as the rate of ow 

of electrical charge. It is always given 

the symbol, I. Mathematically the 

denition for current is expressed as 

follows:

Current =
charge owed__

 time taken

I =
∆Q_
∆t

or (in calculus notation) I =
dQ_
dt

1 ampere =
1 coulomb__
1 second

1 A = 1 C s 1

If a current ows in just one direction 

it is known as a direct current. 

A current that constantly changes 

direction (rst one way then the other) 

is known as an alternating current

or ac.

In SI units, the ampere is the base unit 

and the coulomb is a derived unit

1 C = 1 A s
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ohm’s law – ohmiC and non-ohmiC bEhaviour

The graphs below show how the current varies with potential difference for some 

typical devices.

(a) metal at constant
temperature

(b) lament lamp (c) diode

potential

dierence

cu
rr

e
n

t

potential

dierence
cu

rr
e

n
t

potential

dierence

cu
rr

e
n

t

If current and potential difference are proportional (like the metal at constant temperature) 

the device is said to be ohmic. Devices where current and potential difference are not 

proportional (like the lament lamp or the diode) are said to be non-ohmic

Ohm’s law states that the current owing through a piece of metal is proportional to the potential difference across it providing the 

temperature remains constant.

In symbols, 

V ∝ I [if temperature is constant]

A device with constant resistance (in other words an ohmic device) is called a resistor

powEr dissipation

Since potential difference =
energy difference__

charge owed

And current =
charge owed__

time taken

This means that potential difference × current

= 
(energy difference)__

(charge owed)
×

(charge owed)__
(time taken)

= 
energy difference__

time

This energy difference per time is the power dissipated by the 

resistor. All this energy is going into heating up the resistor. In 

symbols:

P = V × I

Sometimes it is more useful to use this equation in a slightly 

different form, e.g.

P = V × I but V = I × R so

P = (I × R) × I

P = I
2
 R

Similarly P = V
2 

_
R

ExamplE

A 1.2 kW electric kettle is plugged into 

the 250 V mains supply. Calculate

(i) the current drawn

(ii) its resistance

(i) I = 1200_
250

= 4.8 A

(ii) R = 250_
4.8

= 52 Ω

rEsistanCE

Resistance is the mathematical ratio 

between potential difference and 

current. If something has a high 

resistance, it means that you would 

need a large potential difference across 

it in order to get a current to ow.

Resistance =
potential difference__

current

In symbols, R = V

I

We dene a new unit, the ohm, Ω, to 

be equal to one volt per amp. 

1 ohm = 1 V A 1

CirCuits – KirChoff’s CirCuit laws

An electric circuit can contain many 

different devices or components. The 

mathematical relationship V = IR can be 

applied to any component or groups of 

components in a circuit.

When analysing a circuit it is important 

to look at the circuit as a whole. The 

power supply is the device that is 

providing the energy, but it is the whole 

circuit that determines what current 

ows through the circuit.

Two fundamental conservation laws 

apply when analysing circuits: the 

conservation of electric charge and the 

conservation of energy.  These laws are 

collectively known as Kirchoff’s circuit 

laws and can be stated mathematically as:

First law: ∑I = 0 (junction)

Second law: ∑ V = 0 (loop)

The rst law states that the algebraic 

sum of the currents at any junction in 

the circuit is zero.  The current owing 

into a junction must be equal to the 

current owing out of a junction. In 

the example (right) the unknown 

current x = 5.5 + 2.7  3.4 = 4.8 A

5.5A

3.4A

x

2.7A

The second law states that around 

any loop, the total energy per unit 

charge must sum to zero.  Any source 

of potential difference within the loop 

must be completely dissipated across 

thecomponents in the loop (potential 

drop across the component).Care 

needsto betaken to get the sign of any 

pd correct.

• If the chosen loop direction is from 

the negative side of a battery to its 

positive side, this is an increase in 

potential and the value is positive 

when calculating the sum. 

• If the direction around the loop is 

in the same direction as the current 

owing through the component, this 

is a potential drop and the value is 

negative when calculating the sum.

The example below shows one loop in a 

larger circuit. Anti-clockwise consideration 

of the loop means that:

12.0 - 5.3 x + 2.7  3.2 = 0. 

The potential difference across the bulb, 

x = 6.2 V

pd = -5.3v pd = +2.7v

pd = -3.2vpd = +12v

pd = -x

+

+

+ -

+

An example of the use of Kirchoff’s 

circuit laws is shown on page 59.
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rEsistors in parallEl
A parallel circuit branches and allows the charges more than one possible route 

around the circuit.

M

V

V

V

I
total

I
total

V
total

I
1

I
1R

1

I
2

I
2R

2

I
3

I
3R

3

I
2
+ I

3
I
2
+ I

3

Example of a parallel circuit

Since the power supply xes the potential difference, each component has the same 

potential difference across it. The total current is just the addition of the currents in 

each branch.

I
total

= I
1
+ I

2
+ I

3

= 
V_
R

1

+
V_
R

2

+
V_
R

3

1_
R

total

= 
1_
R

1

+
1_
R

2

+
1_
R

3

1_
R

total

=
1
3

+
1
4

+
1
5

Ω 1

=
20 + 15 + 12__

60
Ω 1

=
47_
60

Ω 1

∴ R
total

=
60_
47

Ω

= 1.28 Ω

rEsistors in sEriEs
A series circuit has components connected one after another in a continuous chain. 

The current must be the same everywhere in the circuit since charge is conserved. 

The total potential difference is shared among the components.

M

(6 + 8 + 10 = 24 V)
pd of power supply

power supply
(24V)

I

(2A)
I

(2A)
R1

(3Ω)
R2

(4Ω)
R3

(5Ω)

resistor

thermal enery

ul

liht enery
and thermal

enery

motor

mehanial
enery

and thermal
enery

eletrial
enery is
onerted
into

potential
dierene

Total resistance = 3Ω + 4 Ω + 5 Ω = 12 Ω

Example of a series circuit

We can work out what share they take 

by looking at each component in turn, 

e.g. 

The potential difference across the 

resistor = I × R
1

The potential difference across the 

bulb = I × R
2

R
total

= R
1
+ R

2
+ R

3

This always applies to a series circuit. 

Note that V = IR correctly calculates the 

potential difference across each individual 

component as well as calculating it across 

the total.

ElECtriCal mEtErs
A current-measuring meter is called an 

ammeter. It should be connected in 

series at the point where the current 

needs to be measured. A perfect 

ammeter would have zero resistance. 

A meter that measures potential 

difference is called a voltmeter. It 

should be placed in parallel with the 

component or components being 

considered. A perfect voltmeter has 

innite resistance.
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sEnsors

A light-dependent resistor (LDR), is a device whose 

resistance depends on the amount of light shining on its 

surface. An increase in light causes a decrease in resistance. 

LDR

When light shines on the

LDR, there will be a

decrease in pd across

the LDR.

When light shines on the

LDR, there will be an

increase in pd across

the xed resistor.

10 k

pd Vtotal

A thermistor is a resistor whose value of resistance depends 

on its temperature. Most are semi-conducting devices that 

have a negative temperature coefcient (NTC). This 

means that an increase in temperature causes a decrease in 

resistance. Both of these devices can be used in potential 

divider circuits to create sensor circuits. The output potential 

difference of a sensor circuit depends on an external factor. 

potEntial dividEr CirCuit

The example on the right is an example of a circuit involving 

a potential divider. It is so called because the two resistors 

‘divide up’ the potential difference of the battery. You can 

calculate the ‘share’ taken by one resistor from the ratio of 

the resistances but this approach does not work unless the 

voltmeter’s resistance is also considered. An ammeter’s internal 

resistance also needs to be considered. One of the most 

common mistakes when solving problems involving electrical 

circuits is to assume the current or potential difference remains 

constant after a change to the circuit. After a change, the only 

way to ensure your calculations are correct is to start again.

A variable potential divider (a potentiometer) is often the 

best way to produce a variable power supply. When designing 

the potential divider, the smallest resistor that is going to be 

connected needs to be taken into account: the potentiometer’s 

resistance should be signicantly smaller. 

output voltage

A potentiometer has

3 terminals – the 2 ends

and the central connection

In order to measure the V I characteristics of an unknown 

resistor R, the two circuits (A and B) below are constructed. 

Both will both provide a range of readings for the potential 

difference, V, across and current, I, through R. Providing that 

R >> the resistance of the potentiometer, this circuit (circuit B) 

is preferred because the range of readings is greater.

• Circuit B allows the potential difference across R (and 

hence the current through R) to be reduced down to zero. 

Circuit A will not go below the minimum value achieved 

when the variable resistor is at its maximum value. 

• Circuit B allows the potential difference across R (and hence 

the current through R) to be increased up to the maximum 

value V
supply

 that can be supplied by the power supply in 

regular intervals. The range of values obtainable by Circuit A

depends on a maximum of resistance of the variable resistor.

Vsupply

variable resistor

Circuit A – variable resistor

A

R V

Circuit B – potentiometer

potentiometer

Vsupply R V

A

ExamplE

In the circuit below the voltmeter has a resistance of 20 kΩ. 

Calculate:

(a) the pd across the 20 kΩ resistor with the switch open

(b) the reading on the voltmeter with the switch closed.

V

6.0 V

10 kΩ 20 kΩ

20 kΩ

(a) pd = 20_________
(20 + 10)

× 6.0 = 4.0 V

(b) resistance of 20 kΩ resistor and voltmeter combination, R, 

given by: 

1
R
=

1_
20

+
1_
20

kΩ 1

∴ R = 10 kΩ

∴ pd =
10_

(10 + 10)
× 6.0 = 3.0 V

When the temperature 
of the thermistor increases, 
there will be an increase in 
pd across the xed 
resistor.

10 kΩ

of the thermistor 
increases, there will be a
decrease in pd across
the thermistor.

NTC
thermistor

pd Vtotal
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rEsistivity
The resistivity, ρ, of a material is dened in terms of its 

resistance, R, its length l and its cross-sectional area A

R = ρ
l

A

The units of resistivity must be ohm metres (Ω m). Note that 

this is the ohm multiplied by the metre, not ‘ohms per metre’.

Exmpe
The resistivity of copper is 3.3 × 10 7 Ω m; the resistance of a 

100 m length of wire of cross-sectional area 1.0 mm2 is:

R = 3.3 × 10 7 ×
100_
10 4

= 0.3 Ω

invEstigating rEsistanCE
The resistivity equation predicts that the resistance R of a substance will be:

a) Proportional to the length l of the substance 

b) Inversely proportional to the cross-sectional area A of the substance.

These relationships can be predicted by considering resistors in series and in parallel:

a) Increasing l is like putting another resistor in series. Doubling l is the same as putting an identical resistor in series. R in series 

with R has an overall resistance of 2R. Doubling l means doubling R. So R ∝ l. A graph of R vs I will be a straight line going 

through the origin.

b) Increasing A is like putting another resistor in parallel. Doubling A is the same as putting an identical resistor in parallel. R in 

parallel with R has an overall resistance of R

2
. Doubling A means halving R. So R ∝ 

1
A

. A graph of R vs 1
A

 will be a straight line 

going through the origin.

To practically investigate these relationships, we have:

Independent variable: Either l or A

Control variables: A or l (depending on above choice);

Temperature;

Substance.

Data collection: For each value of independent variable:

• a range of values for V and I should be recorded 

• R can be calculated from the gradient of a V vs I graph.  

Data analysis Values of R and the independent variable analysed graphically.

Possible sources of error/uncertainty include:

• Temperature variation of the substance (particularly if currents are high). Circuits should not be left connected.

• The cross-sectional area of the wire is calculated by measuring the wire’s diameter, d, and using A = πr2 =
πd2___
4

. Several sets of 

measurements should be taken along the length of the wire and the readings in a set should be mutually perpendicular.

• The small value of the wire’s diameter will mean that the uncertainties generated using a ruler will be large. This will be improved 

using a vernier calliper or a micrometer



59E l E c t r i c i t y  a n d  M a g n E t i s M

Ee  e  Kc' 

KirChoff CirCuit laws ExamplE
Great care needs to be taken when applying Kirchoff’s laws to ensure that every term in the equation is correctly identied as 

positive or negative. The concept of emf (see page 60) as sources of electrical energy can be used along with V = IR to provide 

an alternative statement of the second law which may help avoid confusion: ‘Round any closed circuit, the sum of the emfs is 

equal to the sum of the products of current and resistance’.

∑(emf) = ∑(IR)

Process to follow

• Draw a full circuit diagram.

• It helps to set up the equations in symbols before substituting numbers and units.

• It helps to be as precise as possible. Potential difference V is a difference between two points in the circuit so specify which two 

points are being considered (use labels).

• Give the unknown currents symbols and mark their directions on the diagram. If you make a mistake and choose the wrong 

direction for a current, the solution to the equations will be negative.

• Use Kirchoff’s rst law to identify appropriate relationships between currents.

• Identify a loop to apply Kirchoff’s second law. Go all around the loop in one direction (clockwise or anticlockwise) adding the 

emfs and I × R in senses shown below:

emf ε

chosen direction around loop

With chosen direction around
loop in the direction shown, ε and
IR are both positive in the
Kircho equation:

(If chosen direction opposite to that
shown, values are negative)

I I

I IR
∑ (emf) = ∑ (IR)

• The total number of different equations generated by Kirchoff’s laws needs to be the same as the number of unknowns for the 

problem to be able to be solved. 

• Use simultaneous equations to substitute and solve for the unknown values.  

• A new loop can be identied to check that calculated values are correct. 

Exmpe

6v

5v 30Ω

10Ω

20Ω

i
1

i
2

i
1

i
2

i
3

i
3

Kirchoff 1st law junction C(or D)

i
1
+ i

2
= i

3
(1)

Kirchoff 2nd law and ACDB

10i
3
+ 20i

1
= 6 (2)

Sub (1) into (2)

10 (i
1
+ i

2
) + 20i

1
= 6

∴ 30i
1
+ 10i

2
= 6 (3)

Kirchoff 2nd law and CEFD

30i
2

 10i
3

= -5 (4)

Sub (1) into (4)

30i
2
+ 10(i

1
+ i

2
) = 5

10i
1
+ 40i

2
= 5 (5)

(3) × 4 120i
1
+ 40i

2
= 24 (6)

 (6) - (5) 110i
1

= 19

∴ i
1

= 0.1727 A

= 172.7 mA

(3) ⇒ 10i
2

= 6  30i
1

= 0.8182

∴ i
2

= 0.08182 A

= 81.8 mA

i
3

= 172.7 + 81.8 mA

= 254.5 mA
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disChargE CharaCtEristiCs

When current (and thus electrical energy) is drawn from a cell, 

the terminal potential difference varies with time. A perfect cell 

would maintain its terminal pd throughout its lifetime; real cells, 

however, do not. The terminal potential difference of a typical cell:

• loses its initial value quickly, 

• has a stable and reasonably constant value for most of its lifetime.

This is followed by a rapid decrease to zero (cell discharges).

The graph below shows the discharge characteristics for one 

particular type of lead–acid car battery.
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CElls and battEriEs

An electric battery is a device consisting of one or more cells 

joined together. In a cell, a chemical reaction takes place, 

which converts stored chemical energy into electrical energy. 

There are two different types of cell: primary and secondary.

A primary cell cannot be recharged. During the lifetime of 

the cell, the chemicals in the cell get used in a non-reversible 

reaction. Once a primary cell is no longer able to provide 

electrical energy, it is thrown away. Common examples 

include zinc–carbon batteries and alkaline batteries.

A secondary cell is designed to be recharged. The chemical 

reaction that produces the electrical energy is reversible. A 

reverse electrical current charges the cell allowing it to be 

reused many times. Common examples include a lead–acid 

car battery, nickel–cadmium and lithium-ion batteries.

The charge capacity of a cell is how much charge can ow before 

the cells stops working. Typical batteries have charge capacities that 

are measured in Amp-hours (A h). 1 A h is the charge that ows 

when a current of 1 A ows for one hour i.e. 1 A h = 3600 C.

rECharging sECondary CElls
In order to recharge a secondary cell, it is connected to an external 

DC power source. The negative terminal of the secondary cell is 

connected to the negative terminal of the power source and the 

positive terminal of the power source with the positive terminal 

of the secondary cell. In order for a charging current, I, to ow, 

the voltage output of the power source must be slightly higher 

than that of the battery. A large difference between the power 

source and the cell's terminal potential difference means that the 

charging process will take less time but risks damaging the cell.

secondary cell being charged

power source
(slightly higher pd)

I I

+

dEtErmining intErnal rEsistanCE

ExpErimEntally

To experimentally determine the internal resistance r of a cell 

(and its emf ε), the circuit below can be used:

terminal pd, V

emf, ε

V

internal 
resistance, r

external resistance, R

cu
rr

en
t

 I

battery 

terminal

battery 

terminal

I

Procedure:

• Vary external resistance R to get a number (ideally 10 or 

more) of matching readings of V and I over as wide a range 

as possible.

• Repeat readings.

• Do not leave current running for too long (especially at 

high values of I).

• Take care that nothing overheats.

Data analysis:

• The relevant equation, V = ε Ir was introduced above.

• A plot of V on the y-axis and I on the x-axis gives a straight 

line graph with 

• gradient = - r

• y-intercept = ε

ElECtromotivE forCE and intErnal rEsistanCE

When a 6V battery is connected in a circuit some energy will be 

used up inside the battery itself. In other words, the battery has 

some internal resistance. The TOTAL energy difference per unit 

charge around the circuit is still 6 volts, but some of this energy is 

used up inside the battery. The energy difference per unit charge 

from one terminal of the battery to the other is less than the total 

made available by the chemical reaction in the battery.

For historical reasons, the TOTAL energy difference per unit 

charge around a circuit is called the electromotive force (emf).

However, remember that it is not a force (measured in newtons) 

but an energy difference per charge (measured in volts). 

In practical terms, emf is exactly the same as potential 

difference if no current ows.

ε = I (R + r)

‘perfect battery’
ε (e m f) = 6 V

internal resistance

r

terminals of battery

R
external resistance

e m f = I × R
total

= I(r + R)

= Ir + IR

IR = emf Ir

          terminal p d, V   ‘lost’ volts

V = ε - Ir
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magnEtiC fiEld linEs
There are many similarities between the magnetic force and 

the electrostatic force. In fact, both forces have been shown to 

be two aspects of one force – the electromagnetic interaction 

(see page 78). It is, however, much easier to consider them as 

completely separate forces to avoid confusion. 

Page 52 introduced the idea of electric elds. A similar concept 

is used for magnetic elds. A table of the comparisons between 

these two elds is shown below. 

Electric eld Magnetic eld

Symbol E B

Caused by … Charges Magnets (or electric 

currents)

Affects … Charges Magnets (or electric 

currents)

Two types 

of …

Charge: positive and 

negative

Pole: North and 

South

Simple force 

rule:

Like charges repel, 

unlike charges attract

Like poles repel,

unlike poles attract

In order to help visualize a magnetic eld we, once again, use 

the concept of eld lines. This time the eld lines are lines of 

magnetic eld – also called ux lines. If a ‘test’ magnetic North 

pole is placed in a magnetic eld, it will feel a force. 

• The direction of the force is shown by the direction of the 

eld lines. 

• The strength of the force is shown by how close the lines are 

to one another.

Force here 
strong since 
eld lines are 
close together.

A ‘test’ South pole 
here would feel a 
force in the
opposite direction.

N S

Force here 
weak since 
eld lines are 
far apart.

Overall force is in 
direction shown 
because a North
pole would feel a 
repulsion and an 
attraction as shown.

rotate

N

S

N

S

A small magnet placed in the eld would rotate until lined up 

with the eld lines. This is how a compass works. Small pieces 

of iron (iron lings) will also line up with the eld lines – they 

willbe induced to become little magnets.

Field pattern of an isolated bar magnet

Despite all the similarities between electric elds and magnetic 

elds, it should be remembered that they are very different. 

For example:

• A magnet does not feel a force when placed in an electric 

eld. 

• A positive charge does not feel a force when placed 

stationary in a magnetic eld.

• Isolated charges exist whereas isolated poles do not.

• The Earth itself has a magnetic eld. It turns out to be 

similar to that of a bar magnet with a magnetic South pole 

near the geographic North Pole as shown below.

A magnet free to
move in all
directions would
line up pointing
along the eld
lines. A compass is
normally only free to
move horizontally, so it
ends up pointing along the
horizontal component of the eld.
The magnetic North pole of the
compass points towards the geographic
North Pole − hence its name.

geographic

South Pole

geographic North Pole

arth

S

N

An electric current can also cause a magnetic eld. The 

mathematical value of the magnetic elds produced in this way 

is given on page 63. The eld patterns due to different currents 

can be seen in the diagrams below.

I

I

current

thumb
(current direction)

curl of ngers 
gives direction of 
eld lines

The eld lines are circular around the current.

The direction of the eld lines can be remembered with the right-

hand grip rule. If the thumb of the right hand is arranged to point 

along the direction of a current, the way the ngers of the right 

hand naturally curl will give the direction of the eld lines.

Field pattern of a straight wire carrying current

current out
of page

cross-section

current into
page

Field pattern of a at circular coil

A long current-carrying coil is called a solenoid.

N S

cross-section

eld pattern of 
solenoid is the same 
as a bar magnet

poles of solenoid can 
be predicted using 
right-hand grip rule

Field pattern for a solenoid
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magnEtiC forCE on a moving ChargE
A single charge moving through a magnetic eld also feels a 

force in exactly the same way that a current feels a force. 

In this case the force on a moving charge is proportional to:

• the magnitude of the magnetic eld, B

• the magnitude of the charge, q

• the velocity of the charge, v

• the sine of the angle, θ, between the velocity of the charge 

and the eld.

We can use these relationships to give an alternative denition 

of the magnetic eld strength, B. This denition is exactly 

equivalent to the previous denition.

F = Bqv sin θ or B =

F_
qv sin θ

Since the force on a moving charge is always at right angles to 

the velocity of the charge the resultant motion can be circular. 

An example of this would be when an electron enters a region 

where the magnetic eld is at right angles to its velocity as 

shown below.

electron F

F

F F

N

S

An electron moving at right angles to a magnetic eld

magnEtiC forCE on a CurrEnt
When a current-carrying wire is placed in a magnetic eld the 

magnetic interaction between the two results in a force. This 

is known as the motor effect. The direction of this force is at 

right angles to the plane that contains the eld and the current 

as shown below.

N S

I
zero force

F

F

I

I

θ

force at right

angles to plane of 

current and eld 

lines

force maximum 

when current and 

eld are at right

angles

second nger

(current) I

force on current

I
I

force (F)

eld (B)

current (I)

thumb

(force)

F

rst nger

(eld) B

N

S

Fleming’s left-hand rule

Experiments show that the force is proportional to:

• the magnitude of the magnetic eld, B

• the magnitude of the current, I

• the length of the current, L, that is in the magnetic eld

• the sine of the angle, θ, between the eld and current.

The magnetic eld strength, B is dened as follows:

F = BIL sin θ or

B =

F_
IL sin θ

A new unit, the tesla, is introduced. 1 T is dened to be equal to 

1 N A 1 m 1. Another possible unit for magnetic eld strength is 

Wb m 2. Another possible term is magnetic ux density.
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straight wirE
The eld pattern around a long straight wire shows that as 

one moves away from the wire, the strength of the eld gets 

weaker. Experimentally the eld is proportional to:

• the value of the current, I

• the inverse of the distance away from the wire, r. If the 

distance away is doubled, the magnetic eld will halve.

• The eld also depends on the medium around the wire. 

These factors are summarized in the equation:

B = 
µI_

2πr

r

I

I

Magnetic eld of a straight current

The constant µ is called the permeability and changes if the 

medium around the wire changes. Most of the time we consider 

the eld around a wire when there is nothing there – so we 

use the value for the permeability of a vacuum, µ
0
. There is 

almost no difference between the permeability of air and the 

permeability of a vacuum. There are many possible units for this 

constant, but it is common to use N A 2 or T m A 1

Permeability and permittivity are related constants. In other 

words, if you know one constant you can calculate the other. 

In the SI system of units, the permeability of a vacuum is 

dened to have a value of exactly 4 π × 10 7 N A 2. See the 

denition of the ampere (right) for more detail.

magnEtiC fiEld in a solEnoid
The magnetic eld of a solenoid is very similar to the 

magnetic eld of a bar magnet. As shown by the parallel eld 

lines, the magnetic eld inside the solenoid is constant. It 

might seem surprising that the eld does not vary at all inside 

the solenoid, but this can be experimentally veried near the 

centre of a long solenoid. It does tend to decrease near the 

ends of the solenoid as shown in the graph below.

axis

magnetic field along axis

I I

constant field

in centre

(n = number of turns, l = length)

distance

B

Variation of magnetic eld in a solenoid

The mathematical equation for this constant eld at the centre 

of a long solenoid is

B = µ ( n
l

) I

Thus the eld only depends on:

• the current, I

• the number of turns per unit length,
n

l

• the nature of the solenoid core, µ

It is independent of the cross-sectional area of the solenoid.

two parallEl wirEs – dEfinition  

of thE ampErE
Two parallel current-carrying wires provide a good example 

of the concepts of magnetic eld and magnetic force. Because 

there is a current owing down the wire, each wire is 

producing a magnetic eld. The other wire is in this eld so 

it feels a force. The forces on the wires are an example of a 

Newton’s third law pair of forces.

r

length l2length l1

length l1
length l2

r
F

r

r
F

B1

B1

I1 I2

B1
B1

B1 = field produced by I1

=
 I1

2πr

  ∴ force per unit

length of I2

=
B1 I2 l2

l2

= B1 I2

=
I1 I2

2πr 

force felt by I2

= B1 × I2 × l2



∴ force per unit

length of I1

=
B2 I1 l1

l1

= B2 I1

=
  I1 I2

2πr

force felt by I1

= B2 × I1 × l1



B2 = field produced by I2

=
   I2

2πr



I2

B2
B2

B2

I1

B2

Magnitude of force per unit length on either wire =
µI I

2____
2πr

This equation is experimentally used to dene the ampere. 

The coulomb is then dened to be one ampere second. If we 

imagine two innitely long wires carrying a current of one 

amp separated by a distance of one metre, the equation would 

predict the force per unit length to be 2 × 10 7 N. Although it is 

not possible to have innitely long wires, an experimental set-

up can be arranged with very long wires indeed. This allows the 

forces to be measured and ammeters to be properly calibrated. 

The formulae used on this page do not need to be 

remembered.
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1. Which one of the eld patterns below could be produced by 

two point charges?

A. C.

B. D.

2. Two long, vertical wires X and Y carry currents in the same 

direction and pass through a horizontal sheet of card.

X Y

Iron lings are scattered on the card. Which one of the 

following diagrams best shows the pattern formed by the iron 

lings? (The dots show where the wires X and Y enter the card.)

A. C.

B. D.

3. This question is about the electric eld due to a charged 

sphere and the motion of electrons in that eld.

The diagram below shows an isolated metal sphere in a 

vacuum that carries a negative electric charge of 9.0 nC.

-

a) On the diagram draw arrows to represent the electric eld 

pattern due to the charged sphere. [3]

b) The electric eld strength at the surface of the sphere and 

at points outside the sphere can be determined by assuming 

that the sphere acts as though a point charge of magnitude 

9.0 nC is situated at its centre. The radius of the sphere 

is 4.5 × 10 2 m. Deduce that the magnitude of the eld 

strength at the surface of the sphere is 4.0 × 104 V m 1. [1]

An electron is initially at rest on the surface of the sphere.

c) (i) Describe the path followed by the electron as it leaves 

the surface of the sphere. [1]

(ii) Calculate the initial acceleration of the electron. [3]

(iii) State and explain whether the acceleration of the 

electron remains constant, increases or  

decreases as it moves away from the sphere. [2]

(iv) At a certain point P, the speed of the electron is  

6.0 × 106 m s 1. Determine the potential difference 

between the point P and the surface of the sphere. [2]

4. In order to measure the voltage-current (V-I) characteristics 

of a lamp, a student sets up the following electrical circuit.

12 V battery

a) On the circuit above, add circuit symbols showing the 

correct positions of an ideal ammeter and an ideal 

voltmeter that would allow the V-I characteristics of this 

lamp to be measured. [2]

The voltmeter and the ammeter are connected correctly in 

the circuit above.

b) Explain why the potential difference across the lamp

(i) cannot be increased to 12 V. [2]

(ii) cannot be reduced to zero. [2]

An alternative circuit for measuring the V-I characteristic  

uses a potential divider. [3]

c) (i) Draw a circuit that uses a potential divider to  

enable the V-I characteristics of the lament to  

be found. [3]

(ii) Explain why this circuit enables the potential 

difference across the lamp to be reduced to  

zero volts. [2]

The graph below shows the V-I characteristic for two 12 V 

lament lamps A and B.

lamp A lamp B

1.00.50
0

12

current / A

potential

dierence / V

d) State and explain which lamp has the greater power 

dissipation for a potential difference of 12 V. [3] 

The two lamps are now connected in series with a 12 V 

battery as shown below.

12 V battery

lamp Blamp A

e) (i) State how the current in lamp A compares with  

that in lamp B. [1]

(ii) Use the V-I characteristics of the lamps to deduce  

the total current from the battery. [4]

(iii) Compare the power dissipated by the two lamps. [2]

i B  Q u E s t i o n s  –  E l E c t r i c i t y  a n d  M a g n E t i s M
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Mechanics of circUlar Motion

The phrase ‘uniform circular motion’ 

is used to describe an object that is 

going around a circle at constant speed. 

Most of the time this also means that 

the circle is horizontal. An example of 

uniform circular motion would be the 

motion of a small mass on the end of a 

string as shown below.

mass moves at
constant speed

Example of uniform circular motion

It is important to remember that even 

though the speed of the object is constant, 

its direction is changing all the time. 

speed is constant but the direction is
constantly changing

v m s 1

v m s 1

v m s 1

v m s 1 v m s 1

Circular motion – the direction of 

motion is changing all the time

This constantly changing direction means 

that the velocity of the object is constantly 

changing. The word ‘acceleration’ is used 

whenever an object’s velocity changes. 

This means that an object in uniform 

circular motion MUST be accelerating 

even if the speed is constant. 

The acceleration of a particle travelling in 

circular motion is called the centripetal 

acceleration. The force needed to cause 

the centripetal acceleration is called the 

centripetal force

MatheMatics of circUlar Motion

The diagram below allows us to work out the direction of the centripetal 

acceleration – which must also be the direction of the centripetal force. This direction 

is constantly changing. 

situation diagram vB

vA

B

A
vA + change= vB

vector diagram

change in velocity directed in

towards centre of circle

vB vA

The object is shown moving between two points A and B on a horizontal circle. Its velocity 

has changed from v
A
 to v

B
. The magnitude of velocity is always the same, but the direction 

has changed. Since velocities are vector quantities we need to use vector mathematics to 

work out the average change in velocity. This vector diagram is also shown above. 

In this example, the direction of the average change in velocity is towards the centre 

of the circle. This is always the case and thus true for the instantaneous acceleration. 

For a mass m moving at a speed v in uniform circular motion of radius r

Centripetal acceleration a
centripetal

=
v

2

r
 [in towards the centre of the circle]

A force must have caused this acceleration. The value of the force is worked out 

using Newton’s second law:

Centripetal force (CPF) F
centripetal

= m a
centripetal

=
m v

2
____

r
[in towards the centre of the circle]

For example, if a car of mass 1500 kg is travelling at a constant speed of 20 m s 1

around a circular track of radius 50 m, the resultant force that must be acting on it 

works out to be

F =

1500(20)2

__________
50

= 12 000 N

It is really important to understand that centripetal force is NOT a new force that 

starts acting on something when it goes in a circle. It is a way of working out what 

the total force must have been. This total force must result from all the other forces 

on the object. See the examples below for more details.

One nal point to note is that the centripetal force does NOT do any work. (Work 

done = force × distance in the direction of the force.)

exaMples

friction forces
between
tyres and road

F T cos θ

θ

T sin θ

T

mg

A conical pendulum – centripetal force
provided by horizontal component 
of tension.

R cos θ

R sin θ

θ

W

At a particular speed, the horizontal component 
of the normal reaction can provide all the 
centripetal force (without needing friction).

EarthMoon

Earth's gravitational 
attraction on
Moon

R
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radians
Angles measure the fraction of a complete circle that has 

been achieved. They can, of course, be measured in degrees 

(symbol: °) but in studying circular motion, the radian 

(symbol: rad) is a more useful measure. 

θ

rradius

s distance along

circular arc

The fraction of the circle that has been achieved is the ratio of 

arc length s to the circumference:

fraction of circle =
s____

2πr
In degrees, the whole circle is divided up into 360° which 

denes the angle θ as:

θ(in degrees) =
s____

2πr
× 360

In radians, the whole circle is divided up into 2π radians 

which denes the angle θ as:

θ(in radians) =
s____

2πr
× 2π =

s
r

For small angles (less than  

about 0.1 rad or 5°), the arc and 

the two radii form a shape that 

approximates to a triangle.  Since 

radians are just a ratio, the 

following relationship applies if 

working in radians: 

sinθ ≈ tanθ ≈ θ

Angle/° Angle/radian

0 0.00

5 0.09

45 0.74 =
π

4
60 1.05

90 1.57 =
π

2
180 3.14 = π

270 4.71 =
3π___
2

360 6.28 = 2π

circUlar Motion in a vertical plane
Uniform circular motion of a mass on the end of a string in 

a horizontal plane requires a constant centripetal force to act 

and the magnitude of the tension in the string will not change.  

Circular motion in the vertical plane is more complicated as the 

weight of the object always acts in the same vertical direction.  

The object will speed up and slow down during its motion due 

to the component of its weight that acts along the tangent to 

the circle.  The maximum speed will be when the object is at 

the bottom and the minimum speed will occur at the top.  The 

tension in the string will also change during one revolution.

In a vertical circle, the tension of the string will always act at 90° 

to the object’s velocity so this force does no work in speeding it 

up or slowing it down.  The conservation of energy means that: 

mgy +
1
2

mv2 = constant

small mass
m

path

a) SITUATION DIAGRAM

O

r

y

H

L

b) FREE-BODY DIAGRAM

instantaneous
acceleration

mg

F

1. At the top of the circle:,

The tension in the string, T, and the weight, mg, are in the same 

direction and add together to provide the CPF: 

T
top

+ mg =
mv

top

2

______
r

To remain in the vertical circle, the object must be moving with 

a certain minimum speed. At this minimum top speed, v
top min,

the tension is zero and the centripetal force is provided by the 

object’s weight:

mg =
m(v

top min
)2

__________
r

v
top min

= √rg

2. At the bottom of the circle:,

The tension in the string, T, and the weight, mg, are in opposite 

directions and the resultant force provides the CPF: 

T
bottom

mg =
mv

bottom

2

________
r

In order to complete the vertical circle, the KE at the bottom of 

the circle must be large enough for the object to arrive at the 

top of the circle with sufcient speed(v
top min

= √rg ) to complete 

the circle.  Energetically the object gains PE (= mg × 2r) so it 

must lose the same amount of KE:

1
2

m(v
bottom min

)2 mg2r =
1
2

m(v
top min

)2 =
1
2

mrg

∴ (v
bottom min

)2 4gr = rg

∴ v
bottom min

= √5rg

The mathematics in the above example (a mass on the end of a 

string) can also apply for any vehicle that is ‘looping the loop’.  

In place of T, the tension in the rope, there is N, the normal 

reaction from the surface.

angUlar velocity, ω, and tiMe period, T
An object travelling in circular motion must be constantly 

changing direction. As a result its velocity is constantly 

changing even if its speed is constant (uniform circular motion). 

We dene the average angular velocity, symbol ω (omega) as:

ω
average

=
angle turned____________
time taken

=
∆θ____
∆t

The units of angular velocity are radians per second (rad s 1).

The instantaneous angular velocity is the rate of change of angle:

ω = rate of change of angle =
dθ___
dt

1. Link between ω and v

In a time Δt, the object rotates  

an angle Δθ

θ =
s
r ∴ s = rΔθ

v =
s___

Δt
=

rΔθ_
Δt

= rω

v = rω

2. Link between ω and time period T

The time period T is the time taken to complete one full circle.  

In this time, the total angle turned is 2π radians, so:

ω =
2π___
T

 or T =
2π___
ω

3. Circular motion equations

Substitution of the above equations into the formulae for 

centripetal force and centripetal acceleration (page 65) provide 

versions that are sometime more useful:

centripetal acceleration, a =
v2

r = rω2 =
4π

2r_____
T2

centripetal force, F =
mv2
____

r = mrω2 =
4π

2 mr_______

T
2

v

x

y

θ

au    u m
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newton’s law of Universal gravitation
If you trip over, you will fall down towards the ground.

Newton’s theory of universal gravitation explains what is 

going on. It is called ‘universal’ gravitation because at the core 

of this theory is the statement that every mass in the Universe 

attracts all the other masses in the Universe. The value of the 

attraction between two point masses is given by an equation. 

m
1

m
2

r

m
1

m
2

r 
2

F∝
Gm

1
m

2

r 
2

F=

Universal gravitational constant G = 6.67 × 10 11 N m2 kg 2

The following points should be noticed:

• The law only deals with point masses. 

• There is a force acting on each of the masses. These forces are 

EQUAL and OPPOSITE (even if the masses are not equal).

• The forces are always attractive.

• Gravitation forces act between ALL objects in the Universe. 

The forces only become signicant if one (or both) of the 

objects involved are massive, but they are there nonetheless. 

The interaction between two spherical masses turns out to be 

the same as if the masses were concentrated at the centres of 

the spheres.

gravitational field strength
The table below should be compared with the one on page 61.

Gravitational eld strength

Symbol g

Caused by… Masses

Affects… Masses

One type of… Mass

Simple force rule: All masses attract

The gravitational eld is therefore dened as the force  

per unit mass. g =
F
m

m = small point test mass

test
mass m2

mass M1 producing

gravitational eld g

F
F

m2

F

value of g=

The SI units for g are N kg 1. These are the same as m s 2. 

Field strength is a vector quantity and can be represented by 

the use of eld lines. 

sphere point mass

gravitational 
eld lines

Field strength around masses (sphere and point)

gravitational 

eld

EARTH

Gravitational eld near surface of the Earth

In the example on the left the numerical value for the 

gravitational eld can be calculated using Newton’s law: 

F =
GMm_____

r2
g = 

GM____
r2

The gravitational eld strength at the surface of a planet must 

be the same as the acceleration due to gravity on the surface.

Field strength is dened to be
force_____
mass

Acceleration =
force_____
mass (from F = ma)

For the Earth

M = 6.0 × 1024 kg

r = 6.4 × 106 m

g =
6.67 × 10 11

× 6.0 × 1024
________________________

(6.4 × 106)2
= 9.8 m s 2

exaMple
In order to calculate the overall gravitational eld strength  

at any point we must use vector addition. The overall 

gravitational eld strength at any point between the Earth and 

the Moon must be a result of both pulls.

There will be a single point somewhere between the Earth and 

the Moon where the total gravitational eld due to these two 

masses is zero. Up to this point the overall pull is back to the 

Earth, after this point the overall pull is towards the Moon.

distance between Earth and Moon = (r
1
+ r

2
)

If resultant gravitational eld at X = zero,

GM
Earth_______

r
1

2
=

GM
Moon_______

r
2

2

Earth
up to X overall pull

is back to Earth

beyond X overall 
pull is towards 

Moon

Moon

r1 r2X
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1. A ball is tied to a string and rotated at a uniform speed in 

a vertical plane. The diagram shows the ball at its lowest 

position. Which arrow shows the direction of the net force 

acting on the ball? [1]

D

C

B

A

2. A particle of mass m is moving with constant speed v in 

uniform circular motion. What is the total work done by 

thecentripetal force during one revolution? [1]

A. Zero B.
mv2
____
2

C. mv2 D. 2πmv2

3. A particle P is moving anti-clockwise with constant  

speed in a horizontal circle.

Which diagram correctly shows the direction of the  

velocity v and acceleration a of the particle P in the  

position shown? [1]

P

B.

v

a

P

D. a and v

P

A.

v

a

a

v

P

C.

4. This question is about circular motion.

A ball of mass 0.25 kg is attached to a string and is made to 

rotate with constant speed v along a horizontal circle of radius 

r = 0.33 m. The string is attached to the ceiling and makes an 

angle of 30° with the vertical.

30°

vertical

r = 0.33 m

a) (i) On the diagram above, draw and label arrows  

to represent the forces on the ball in the  

position shown. [2]

(ii) State and explain whether the ball is in equilibrium. [2]

b) Determine the speed of rotation of the ball. [3]

5. This question is about gravitational elds.

a) Dene gravitational eld strength. [2]

b) The gravitational eld strength at the surface of  

Jupiter is 25 N kg 1 and the radius of Jupiter is  

7.1 × 107 m.

(i) Derive an expression for the gravitational  

eld strength at the surface of a planet in terms  

of its mass M, its radius R and the gravitational 

constant G. [2]

(ii) Use your expression in (b)(i) above to estimate  

the mass of Jupiter. [2]

6. Gravitational elds and potential

a) Derive an expression for the gravitational eld  

strength as a function of distance away from a  

point mass M. [3]

b) The radius of the Earth is 6400 km and the  

gravitational eld strength at its surface is 9.8 N kg 1. 

Calculate a value for the mass of the Earth. [2]

c) On the diagram below draw lines to represent the 

gravitational eld outside the Earth. [2]

d) A satellite that orbits the Earth is in the gravitational  

eld of the Earth. Discuss why an astronaut inside  

the satellite feels weightless. [3]

iB Qu – u m  
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Emission spEctra and absorption spEctra
When an element is given enough energy it emits light. This 

light can be analysed by splitting it into its various colours 

(or frequencies) using a prism or a diffraction grating. If all 

possible frequencies of light were present, this would be 

called a continuous spectrum. The light an element emits, 

its emission spectrum, is not continuous, but contains 

only a few characteristic colours. The frequencies emitted 

are particular to the element in question. For example, the 

yellow-orange light from a street lamp is often a sign that 

the element sodium is present in the lamp. Exactly the same 

particular frequencies are absent if a continuous spectrum of 

light is shone through an element when it is in gaseous form. 

This is called an absorption spectrum.

all frequencies
(continuous spectrum)

spectra: emission set-up

sample
of gas

sample of gas

light emitted
from gas

slit
prism
(or diraction

grating)

prism
(or diraction

grating)

spectral
lines

spectral
lines

slit

light
source

spectra: absorption set-up

sodium

mercury

helium

hydrogen

wavelength, λ / nm

330

313

415 420 569 590615

334 365366 398405 436 546 579

319 361 371 382
389

396
403

412 439447 471 492502 588 668

380
384
389

397
410 434 486 656

300 310 320 330 340 350 360 370 380 390400 450 500 550 600 650 700

approximate colour

orange

yellow

blue

invisible
(IR)

Emission spectra

Absorption spectra

Explanation of atomic spEctra
In an atom, electrons are bound to the nucleus. See page 77, 

the atomic model. This means that they cannot ‘escape’ without 

the input of energy. If enough energy is put in, an electron can 

leave the atom. If this happens, the atom is now positive overall 

and is said to be ionized. Electrons can only occupy given energy 

levels – the energy of the electron is said to be quantized. These 

energy levels are xed for particular elements and correspond 

to ‘allowed’ obitals. The reason why only these energies are 

‘allowed’ forms a signicant part of quantum theory (see HL 

topic 12).

When an electron moves between energy levels it must emit 

or absorb energy. The energy emitted or absorbed corresponds 

to the difference between the two allowed energy levels. 

This energy is emitted or absorbed as ‘packets’ of light called 

photons. A higher energy photon corresponds to a higher 

frequency (shorter wavelength) of light.

The energy of a photon is given by

  energy in joules     frequency of  

light in Hz

E = hf 

  Planck’s constant 

  6.63 × 10 34 J s

Thus the frequency of the light, emitted or absorbed, is xed 

by the energy difference between the levels. Since the energy 

levels are unique to a given element, this means that the 

emission (and the absorption) spectrum will also be unique.

allowed
energy 
levels

electron ‘promoted’ from low 
energy level to higher energy level

en
er

g
y

photon of particular 
frequency absorbed

allowed
energy 
levels

electron ‘falls’ from high 
energy level to lower energy level

en
er

g
y

photon of particular 
frequency emitted

Speed of light in m s 1

Since c = fλ

λ = 
hc___
E

Wavelength in m

7 atomic, nuclE ar and particlE physics
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helium

hydrogen
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415 420 569 590615
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380
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wavelength, λ / nm
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orange

yellow

blue

invisible

(IR)



70 At o m i c ,  n u c l e A r  A n d  pA r t i c l e  p h y s i c s

ne  

isotopEs
When a chemical reaction takes place, it involves the outer 

electrons of the atoms concerned. Different elements have 

different chemical properties because the arrangement of 

outer electrons varies from element to element. The chemical 

properties of a particular element are xed by the amount of 

positive charge that exists in the nucleus – in other words, the 

number of protons. In general, different nuclear structures 

will imply different chemical properties. A nuclide is the 

name given to a particular species of atom (one whose nucleus 

contains a specied number of protons and a specied number 

of neutrons). Some nuclides are the same element – they have 

the same chemical properties and contain the same number of 

protons. These nuclides are called isotopes – they contain the 

same number of protons but different numbers of neutrons.

notation

A

Z

mass number – equal to number

of nucleons

atomic number – equal to number of

protons in the nucleus

chemical symbol

Nuclide notation

ExamplEs

Notation Description Comment

1  6

12 C carbon-12 isotope of 2

2  6

13 C carbon-13 isotope of 1

3 92

238 U uranium-238

4 78

198 Pt platinum-198 same mass number 

as 5

5 80

198 Hg mercury-198 same mass number 

as 4

Each element has a unique chemical symbol and its own 

atomic number. No.1 and No.2 are examples of two isotopes, 

whereas No.4 and No.5 are not. 

In general, when physicists use this notation they are 

concerned with the nucleus rather than the whole atom. 

Chemists use the same notation but tend to include the 

overall charge on the atom. Thus   6

12C can represent the 

carbon nucleus to a physicist or the carbon atom to a chemist 

depending on the context. If the charge is present the 

situation becomes unambiguous. 17

35Cl  must refer to a chlorine 

ion – an atom that has gained one extra electron.

nuclEar stability
Many atomic nuclei are unstable. The process by which they 

decay is called radioactive decay (see page 72). It involves 

emission of alpha (α), beta (β) or gamma (γ) radiation. 

The stability of a particular nuclide depends greatly on the 

numbers of neutrons present. The graph below shows the 

stable nuclides that exist.

• For small nuclei, the number of neutrons tends to equal 

the number of protons.

• For large nuclei there are more neutrons than protons.

• Nuclides above the band of stability have ‘too many 

neutrons’ and will tend to decay with either alpha or beta 

decay (see page 72).

• Nuclides below the band of stability have ‘too few 

neutrons’ and will tend to emit positrons (see page 73).
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fe e

strong nuclEar forcE

The protons in a nucleus are all positive. Since like charges 

repel, they must be repelling one another all the time. This 

means there must be another force keeping the nucleus 

together. Without it the nucleus would ‘y apart’. We know a 

few things about this force. 

• It must be strong. If the proton repulsions are calculated it is 

clear that the gravitational attraction between the nucleons 

is far too small to be able to keep the nucleus together.

• It must be very short-ranged as we do not observe this 

force anywhere other than inside the nucleus.

• It is likely to involve the neutrons as well. Small nuclei 

tend to have equal numbers of protons and neutrons. 

Large nuclei need proportionately more neutrons in order 

to keep the nucleus together. 

The name given to this force is the strong nuclear force

WEak nuclEar forcE

The strong nuclear force (see box left) explains why nuclei 

do not y apart and thus why they are stable. Most nuclei, 

however, are unstable. Mechanisms to explain alpha and 

gamma emission (see page 72) can be identied but another 

nuclear force must be involved if we wish to be able to explain 

all aspects of the nucleus including beta emission. We know a 

few things about this force:

• It must be weak. Many nuclei are stable and beta emission 

does not always occur.

• It must be very short-ranged as we do not observe this 

force anywhere other than inside the nucleus.

• Unlike the strong nuclear force, it involves the lighter 

particles (e.g. electrons, positrons and neutrinos) as well as 

the heavier ones (e.g. protons and neutrons).  

The name given to this force is the weak nuclear force

othEr fundamEntal forcEs/intEractions

The standard model of particle physics is based around the forces 

that we observe on a daily basis along with the two ‘new’ forces 

that have been identied as being involved in nuclear stability 

(above). As a result in the standard model, there are only four 

fundament forces (or interactions) that are known to exist. 

These are Gravity, Electromagnetic, Strong and Weak. More 

detail about all these forces is discussed on page 78. Outline 

information about two ‘everyday’ interactions is listed below: 

Gravity

• Gravity is the force of attraction between all objects that 

have mass.  

• Gravity is always attractive – masses are pulled together.

• The range of the gravity force is innite. 

• Despite the above, the gravity force is relatively quite weak. 

At least one of the masses involved needs to be large for the 

effects to be noticeable. For example, the gravitational force 

of attraction between you and this book is negligible, but the 

force between this book and the Earth is easily demonstrable 

(drop it).  

• Newton’s law of gravitation describes the mathematics 

governing this force.

Electromagnetic

• This single force includes all the forces that we normally 

categorize as either electrostatic or magnetic.

• Electromagnetic forces involve charged matter.

• Electromagnetic forces can be attractive or repulsive.

• The range of the electromagnetic force is innite.

• The electromagnetic force is relatively strong – tiny 

imbalances of charges on an atomic level give rise to 

signicant forces on the laboratory scale.

• At the end of the 19th century, Maxwell showed that the 

electrostatic force and the magnetic force were just two 

different aspects of the more fundamental electromagnetic 

force.  

• The mathematics of the electromagnetic force is described by 

Maxwell’s equations. 

• Friction (and many other ‘everyday’ forces) is simply the 

result of the force between atoms and this is governed by the 

electromagnetic interaction.

The electromagnetic force and the weak nuclear force are now 

considered to be aspects of the single electroweak force.

particlEs that ExpEriEncE and mEdiatE thE fundamEntal forcEs.

See page 78 onwards for more details about the standard model for the fundamental structure of matter. The following table 

summarizes which particles experience these forces and how they are mediated.

Gravitational Weak Electromagnetic Strong

Particles experience All Quark, Gluon Charged Quark, Gluon

Particles mediate Graviton W+, W , Z0 γ Gluon



72 At o m i c ,  n u c l e A r  A n d  pA r t i c l e  p h y s i c s

naturE of alpha, bEta and 

gamma dEcay
When a nucleus decays the mass 

numbers and the atomic numbers must 

balance on each side of the nuclear 

equation. 

• Alpha particles are helium nuclei, 2

4α

or 2

4 He2+. In alpha decay, a ‘chunk’ 

of the nucleus is emitted. The portion 

that remains will be a different 

nuclide.

Z

AX → (Z  2)

(A  4)Y + 2

4α

e.g. 95

241Am → 93

237Np + 2

4α

The atomic numbers and the mass 

numbers balance on each side of the 

equation.

(95 = 93 + 2 and 241 = 237 + 4)

• Beta particles are electrons, 1

0 β

or 1

0 e , emitted from the nucleus. 

The explanation is that the electron is 

formed when a neutron decays. At the 

same time, another particle is emitted 

called an antineutrino. 

1

0n → 1

1p + 1

0 β + ν

Since an antineutrino has no charge and 

virtually no mass it does not affect the 

equation.

Z

AX → (Z + 1)

A Y + 1

0 β + ν

e.g. 38

90Sr → 39

90Y + 1

0 β + ν

• Gamma rays are unlike the other two 

radiations in that they are part of the 

electromagnetic spectrum. After their 

emission, the nucleus has less energy 

but its mass number and its atomic 

number have not changed. It is said to 

have changed from an excited state

to a lower energy state. 

Lower energy 

state
Excited 

state

Z

AX → 
Z

AX + 0

0γ

r 1

ioniZing propErtiEs
Many atomic nuclei are unstable. The 

process by which they decay is called 

radioactive decay. Every decay 

involves the emission of one of three 

different possible radiations from the 

nucleus: alpha (α), beta (β) or  

gamma (γ).

α

β

γ

Alpha, beta and gamma all come from 

the nucleus

All three radiations are ionizing. This 

means that as they go through a 

substance, collisions occur which cause 

electrons to be removed from atoms. 

Atoms that have lost or gained electrons 

are called ions. This ionizing property 

allows the radiations to be detected. It 

also explains their dangerous nature. 

When ionizations occur in biologically 

important molecules, such as DNA, 

function can be affected. 

propErtiEs of alpha, bEta and gamma radiations

Property Alpha, α Beta, β Gamma, γ

Effect on photographic lm Yes Yes Yes

Approximate number of 

ion pairs produced in air

104 per mm travelled 102 per mm travelled 1 per mm travelled

Typical material needed to 

absorb it

10 2 mm aluminium; piece of paper A few mm aluminium 10 cm lead 

Penetration ability Low Medium High 

Typical path length in air A few cm Less than one m Effectively innite

Deection by E and B elds Behaves like a positive charge Behaves like a negative charge Not deected

Speed About 107 m s 1 About 108 m s 1, very variable 3 × 108 m s 1

EffEcts of radiation
At the molecular level, an ionization could cause damage directly to a biologically 

important molecule such as DNA or RNA. This could cause it to cease functioning. 

Alternatively, an ionization in the surrounding medium is enough to interfere with 

the complex chemical reactions (called metabolic pathways) taking place.

Molecular damage can result in a disruption to the functions that are taking place 

within the cells that make up the organism. As well as potentially causing the cell 

to die, this could just prevent cells from dividing and multiplying. On top of this, it 

could be the cause of the transformation of the cell into a malignant form.

As all body tissues are built up of cells, damage to these can result in damage to the body 

systems that have been affected. The non-functioning of these systems can result in death 

for the animal. If malignant cells continue to grow then this is called cancer

radiation safEty
There is no such thing as a safe dose of ionizing radiation. Any hospital procedures 

that result in a patient receiving an extra dose (for example having an X-ray scan) 

should be justiable in terms of the information received or the benet it gives.

There are three main ways of protecting oneself from too large a dose. These can be 

summarized as follows:

• Run away!

The simplest method of reducing the dose received is to increase the distance 

between you and the source. Only electromagnetic radiation can travel large 

distances and this follows an inverse square relationship with distance.

• Don’t waste time!

If you have to receive a dose, then it is important to keep the time of this 

exposure to a minimum.

• If you can’t run away, hide behind something! 

Shielding can always be used to reduce the dose received. Lead-lined aprons can 

also be used to limit the exposure for both patient and operator.
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r 2

antimattEr
The nuclear model given on page 77 is somewhat simplied. 

One important thing that is not mentioned there is the 

existence of antimatter. Every form of matter has its 

equivalent form of antimatter. If matter and antimatter came 

together they would annihilate each other. Not surprisingly, 

antimatter is rare but it does exist. For example, another 

form of radioactive decay that can take place is beta plus or 

positron decay. In this decay a proton decays into a neutron, 

and the antimatter version of an electron, a positron, is 

emitted.

1

1p → 0

1n + +1

0β+ + ν

10

19Ne → 9

19F + +1

0β+ + ν

The positron, β+, emission is accompanied by a neutrino. 

The antineutrino is the antimatter form of the neutrino.

For more details see page 78.

background radiation
Radioactive decay is a natural phenomenon and is going on 

around you all the time. The activity of any given source is 

measured in terms of the number of individual nuclear decays 

that take place in a unit of time. This information is quoted in 

becquerels (Bq) with 1 Bq = 1 nuclear decay per second.

Experimentally this would be measured using a Geiger 

counter, which detects and counts the number of ionizations 

taking place inside the GM tube. A working Geiger counter 

will always detect some radioactive ionizations taking place 

even when there is no identied radioactive source: there is a 

background count as a result of the background radiation. 

A reading of 30 counts per minute, which corresponds to the 

detector registering 30 ionizing events, would not be unusual.  

To analyse the activity of a given radioactive source, it is 

necessary to correct for the background radiation taking place. It 

would be necessary to record the background count without the 

radioactive source present and this value can then be subtracted 

from all readings with the source present. 

Some cosmic gamma rays will be responsible, but there will also be 

α, β and γ radiation received as a result of radioactive decays that 

are taking place in the surrounding materials. The pie chart below 

identies typical sources of background radiation, but the actual 

value varies from country to country and from place to place.

natural

radiation

85%

medicine – 14%

nuclear industry – 1%

buildings/soil – 18%

cosmic – 14%

radon – 42%

food/

drinking water – 11%

buildings/soil

medicine

cosmic

radon

food
nuclear industry

random dEcay
Radioactive decay is a random process and is not affected by 

external conditions. For example, increasing the temperature of 

a sample of radioactive material does not affect the rate of decay. 

This means that is there no way of knowing whether or not a 

particular nucleus is going to decay within a certain period of 

time. All we know is the chances of a decay happening in that time. 

Although the process is random, the large numbers of atoms 

involved allows us to make some accurate predictions. If we 

start with a given number of atoms then we can expect a certain 

number to decay in the next minute. If there were more atoms in 

the sample, we would expect the number decaying to be larger. 

On average the rate of decay of a sample is proportional to the 

number of atoms in the sample. This proportionality means that 

radioactive decay is an exponential process. The number of 

atoms of a certain element, N, decreases exponentially over time. 

Mathematically this is expressed as:

dN___
dt

∝ -N
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half-lifE

There is a temptation to think that every quantity that 

decreases with time is an exponential decrease, but 

exponential curves have a particular mathematical property. 

In the graph shown below, the time taken for half the number 

of nuclides to decay is always the same, whatever starting 

value we choose. This allows us to express the chances of 

decay happening in a property called the half-life, T1
2

. The 

half-life of a nuclide is the time taken for half the number 

of nuclides present in a sample to decay. An equivalent 

statement is that the half-life is the time taken for the rate of 

decay (or activity) of a particular sample of nuclides to halve. 

A substance with a large half-life takes a long time to decay. A 

substance with a short half-life will decay quickly. Half-lives 

can vary from fractions of a second to millions of years.

The time taken to halve from
any point is always T
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Half-life of an exponential decay

ExamplE

In simple situations, working out how much radioactive 

material remains is a matter of applying the half-life property 

several times. A common mistake is to think that if the half-

life of a radioactive material is 3 days then it will all decay in 

six days. In reality, after six days (two half-lives) a ‘half of a 

half’ will remain, i.e. a quarter.

3 6 9 12

a
m

ou
n

a
n

ce

decay of radioactive
 ‘parent’ nuclei

increase of stable
 ‘daughter’ nuclei

time / days

after 2 half-lives

1

3
4

after 2 half-lives
     of the original  parent’ nuclei will remain1
4

1
2

The decay of parent into daughter

e.g. The half-life of 6

14C is 5570 years.

Approximately how long is needed before less than 1% of a 

sample of 6

14C remains?

Time Fraction left

T1
2

50%

2T1
2

25%

3T1
2

12.5%

4T1
2

~ 6.3%

5T1
2

~ 3.1%

6T1
2

~ 1.6%

7T1
2

~ 0.8%

6 half lives = 33420 years

7 half lives = 38990 years

∴ approximately 37000 years needed

invEstigating  

half-lifE ExpErimEntally

When measuring the activity of a source, the background rate 

should be subtracted.

• If the half-life is short, then readings can be taken of 

activity against time.

→ A simple graph of activity against time would produce 

the normal exponential shape. Several values of half-life 

could be read from the graph and then averaged. This 

method is simple and quick but not the most accurate.

→ A graph of ln (activity) against time could be produced. 

This should give a straight line and the decay constant can 

be calculated from the gradient. See page 217. 

• If the half-life is long, then the activity will effectively be 

constant over a period of time. In this case one needs to nd 

a way to calculate the number of nuclei present, N, and then 

use

dN___
dt

= -λN. 

simulation

The result of the throw of a die is a random process and can 

be used to simulate radioactive decay. The dice represent 

nuclei available to decay. Each throw represents a unit of 

time. Every six represents a nucleus decaying meaning this die 

is no longer available.
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artificial transmutations

There is nothing that we can do to change the likelihood 

of a certain radioactive decay happening, but under certain 

conditions we can make nuclear reactions happen. This can 

be done by bombarding a nucleus with a nucleon, an alpha 

particle or another small nucleus. Such reactions are called 

articial transmutations. In general, the target nucleus 

rst ‘captures’ the incoming object and then an emission 

takes place. The rst ever articial transmutation was carried 

out by Rutherford in 1919. Nitrogen was bombarded by 

alpha particles and the presence of oxygen was detected 

spectroscopically.

2

4He2+ + 7

14N → 8

17O + 1

1p

The mass numbers (4 + 14 = 17 + 1) and the atomic numbers 

(2 + 7 = 8 + 1) on both sides of the equation must balance.

unifiEd mass units

The individual masses involved in nuclear reactions are 

tiny. In order to compare atomic masses physicists often use 

unied mass units, u. These are dened in terms of the most 

common isotope of carbon, carbon-12. There are 12 nucleons 

in the carbon-12 atom (6 protons and 6 neutons) and one 

unied mass unit is dened as exactly one twelfth the mass 

of a carbon-12 atom. Essentially, the mass of a proton and the 

mass of a neutron are both 1 u as shown in the table below. 

1 u =
1___

12
 mass of a (carbon-12) atom = 1.66 × 10 27 kg

mass* of 1 proton = 1.007 276 u

mass* of 1 neutron = 1.008 665 u

mass* of 1 electron = 0.000 549 u 

* = Technically these are all ‘rest masses’ – see option A

mass dEfEct and binding EnErgy

The table above shows the masses of neutrons and protons. 

It should be obvious that if we add together the masses of 

6 protons, 6 neutrons and 6 electrons we will get a number 

bigger than 12 u, the mass of a carbon-12 atom. What has 

gone wrong? The answer becomes clear when we investigate 

what keeps the nucleus bound together. 

The difference between the mass of a nucleus and the masses 

of its component nucleons is called the mass defect. If one 

imagined assembling a nucleus, the protons and neutrons 

would initially need to be brought together. Doing this takes 

work because the protons repel one another. Creating the bonds 

between the protons and neutrons releases a greater amount 

of energy than the work done in bringing them together. This 

energy released must come from somewhere. The answer lies in 

Einstein’s famous mass–energy equivalence relationship. 

∆E = ∆mc2

energy in joules mass in kg speed of light in m s 1

In Einstein’s equation, mass is another form of energy and it 

is possible to convert mass directly into energy and vice versa. 

The binding energy is the amount of energy that is released 

when a nucleus is assembled from its component nucleons. 

It comes from a decrease in mass. The binding energy would 

also be the energy that needs to be added in order to separate 

a nucleus into its individual nucleons. The mass defect is thus 

a measure of the binding energy.

WorkEd ExamplEs

Question: 

How much energy would be released if 14 g of carbon-14 

decayed as shown in the equation below?

6

14C → 7

14N + 1

0 β + ν

Answer: 

Information given 

atomic mass of carbon-14 = 14.003242 u;  

atomic mass of nitrogen-14 = 14.003074 u;  

mass of electron = 0.000549 u

mass of left-hand side = nuclear mass of 6

14C

= 14.003242  6(0.000549) u

= 13.999948 u

nuclear mass of 7

14N = 14.003074  7(0.000549) u

= 13.999231 u

mass of right-hand side = 13.999231 + 0.000549 u

= 13.999780 u

mass difference = LHS  RHS

= 0.000168 u

energy released per decay = 0.000168 × 931.5 MeV

= 0.156492 MeV

14g of C-14 is 1 mol

∴ Total number of decays = N
A

= 6.022 × 1023

∴ Total energy release = 6.022 × 1023 × 0.156492 MeV

= 9.424 × 1022 MeV

= 9.424 × 1022 × 1.6 × 10 13 J

= 1.51 × 1010 J

≈ 15 GJ

NB Many examination calculations avoid the need to consider 

the masses of the electrons by providing you with the nuclear 

mass as opposed to the atomic mass

units

Using Einstein’s equation, 1 kg of mass is equivalent to  

9 × 1016 J of energy. This is a huge amount of energy. At 

the atomic scale other units of energy tend to be more 

useful. The electronvolt (see page 53), or more usually, the 

megaelectronvolt are often used. 

1 eV = 1.6 × 10 19 J

1 MeV = 1.6 × 10 13 J

1 u of mass converts into 931.5 MeV

Since mass and energy are equivalent it is sometimes useful to 

work in units that avoid having to do repeated multiplications 

by the (speed of light)2. A new possible unit for mass is thus 

MeV c 2. It works like this: 

If 1 MeV c 2 worth of mass is converted you get 1 MeV worth 

of energy.
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fission

Fission is the name given to the nuclear reaction whereby large 

nuclei are induced to break up into smaller nuclei and release 

energy in the process. It is the reaction that is used in nuclear 

reactors and atomic bombs. A typical single reaction might 

involve bombarding a uranium nucleus with a neutron. This 

can cause the uranium nucleus to break up into two smaller 

nuclei. A typical reaction might be:

0

1n + 92

235U → 56

141Ba + 36

92Kr + 3 0

1n + energy

A ssion reaction

Since the one original neutron causing the reaction has resulted 

in the production of three neutrons, there is the possibility of a 

chain reaction occurring. It is technically quite difcult to get 

the neutrons to lose enough energy to go on and initiate further 

reactions, but it is achievable.

A chain reaction

binding EnErgy pEr nuclEon

Whenever a nuclear reaction (ssion or fusion) releases energy, the products of the 

reaction are in a lower energy state than the reactants. Mass loss must be the source 

of this energy. In order to compare the energy states of different nuclei, physicists 

calculate the binding energy per nucleon. This is the total binding energy for the 

nucleus divided by the total number of nucleons. One of the nuclei with the largest 

binding energy per nucleon is iron-56, 26

56Fe.

A reaction is energetically feasible if the products of the reaction have a greater 

binding energy per nucleon when compared with the reactants.
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fusion

Fusion is the name given to the 

nuclear reaction whereby small nuclei 

are induced to join together into 

larger nuclei and release energy in the 

process. It is the reaction that ‘fuels’ 

all stars including the Sun. A typical 

reaction that is taking place in the Sun 

is the fusion of two different isotopes 

of hydrogen to produce helium.

1

2H + 1

3H → 2

4He + 0

1n + energy

One of the fusion reactions happening 

in the Sun

n

Kr-92

U-235

Ba-141

hydrogen-3

hydrogen-2

helium-4

neutron

fusion
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introduction

All matter that surrounds us, living 

or otherwise, is made up of different 

combinations of atoms. There are only a 

hundred, or so, different types of atoms 

present in nature. Atoms of a single 

type form an element. Each of these 

elements has a name and a chemical 

symbol; e.g. hydrogen, the simplest of all 

the elements, has the chemical symbol 

H. Oxygen has the chemical symbol O. 

The combination of two hydrogen atoms 

with one oxygen atom is called a water 

molecule  H
2
O. The full list of elements 

is shown in a periodic table. Atoms 

consist of a combination of three things: 

protons, neutrons and electrons.

cell

DNA

atom

In the basic atomic model, we are made 

upof protons, neutrons, and electrons – 

nothing more.

EvidEncE

One of the most convincing pieces of evidence for the nuclear model of the atom comes from the Rutherford–Geiger–Marsden 

experiment. Positive alpha particles were ‘red’ at a thin gold leaf. The relative size and velocity of the alpha particles meant that 

most of them were expected to travel straight through the gold leaf. The idea behind this experiment was to see if there was any 

detectable structure within the gold atoms. The amazing discovery was that some of the alpha particles were deected through 

huge angles. The mathematics of the experiment showed that numbers being deected at any given angle agreed with an inverse 

square law of repulsion from the nucleus. Evidence for electron energy levels comes from emission and absorption spectra. The 

existence of isotopes provides evidence for neutrons.

vacuum

detector

gold foil target

about 10 8 m thick
screens

source of

α-particles

beam of

α-particles

about 1 in 8000

is repelled back

most pass

straight

through

some are deviated

through a large

angle θ

θ

NB not to scale. Only a minute percentage
of α-particles are scattered or rebound.

1 in 8000
particles
‘rebound’
from the foil.

stream of
α-particles

positive
α-particle
deected by
nucleus

positive nucleus

gold

atom

Rutherford–Geiger–Marsden experiment Atomic explanation of Rutherford–Geiger–Marsden 

experiment

atomic modEl

The basic atomic model, known as the nuclear model, was developed during the 

last century and describes a very small central nucleus surrounded by electrons 

arranged in different energy levels. The nucleus itself contains protons and neutrons 

(collectively called nucleons). All of the positive charge and almost all the mass of 

the atom is in the nucleus. The electrons provide only a tiny bit of the mass but all of 

the negative charge. Overall an atom is neutral. The vast majority of the volume is 

nothing at all – a vacuum. The nuclear model of the atom seems so strange that there 

must be good evidence to support it.

Protons Neutrons Electrons 

Relative mass 1 1 Negligible 

Charge +1 Neutral 1

Electron ‘clouds’. The positions of the 6 electrons
are not exactly known but they are most likely to 
be found in these orbitals. The dierent orbitals 
correspond to dierent energy levels.

protons

nucleus

nucleus

  m

  m

Atomic model of carbon

This simple model has limitations. Accelerated charges are known to radiate energy 

so orbital electrons should constantly lose energy (the changing direction means the 

electrons are accelerating).
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classification of particlEs
Particle accelerator experiments identify 

many, many ‘new’ particles. Two original 

classes of particles were identied – the 

leptons (= ‘light’) and the hadrons (=

‘heavy’). Protons and neutrons are hadrons 

whereas electrons are leptons. The hadrons 

were subdivided into mesons and baryons. 

Protons and neutrons are baryons. Another 

class of particles is involved in the mediation 

of the interactions between the particles. 

These were called gauge bosons or 

‘exchange bosons’.

Particles are called elementary if they have 

no internal structure, that is, they are not 

made out of smaller constituents. The classes 

of elementary particles are quarks, leptons

and the exchange particles. Another particle, 

the Higgs boson, is also an elementry particle. 

Combinations of elementary particles are 

called composite particles. All hadrons are 

composed of combinations of quarks. Inside

all baryons there are three quarks (or three 

antiquarks); inside all mesons there is one 

quark and one antiquark.

consErvation laWs
Not all reactions between particles are possible. The study of the reactions 

that did take place gave rise to some experimental conservation laws that 

applied to particle physics. Some of these laws were simply conrmation of 

conservation laws that were already known to physicists – charge, momentum 

(linear and angular) and mass-energy. On top of these fundamental laws there 

appeared to be other rules that were never broken e.g. the law of conservation 

of baryon number. If all baryons were assigned a ‘baryon number’ of 1 (and 

all antibaryons were assigned a baryon number of 1) then the total number 

of baryons before and after a collision was always the same. A similar law of 

conservation of lepton number applies.

Other reactions suggested new and different particle properties that were often, 

but not always, conserved in reactions. ‘Strangeness’ and ‘charm’ are examples 

of two such properties. Strangeness is conserved in all electromagnetic and 

strong interactions, but not always in weak interactions.

All particles, whether they are elementary or composite, can be specied in 

terms of their mass and the various quantum numbers that are related to the 

conservation laws that have been discovered. The quantum numbers that are 

used to identify particles include:

• electric charge, strangeness, charm, lepton number, baryon number and colour 

(this property is not the same as an object’s actual colour – see page 79).

Every particle has its own antiparticle. An antiparticle has the same mass as 

its particle but all its quantum numbers (including charge, etc.) are opposite. 

There are some particles (e.g. the photon) that are their own antiparticle.

thE standard modEl – lEptons
There are six different leptons and six different antileptons. The 

six leptons are considered to be in three different generations or 

families in exactly the same way that there are considered to be 

three different generations of quarks (see page 79).

The electron and the electron neutrino have a lepton (electron 

family) number of +1. The antielectron and the antielectron 

neutrino have a lepton (electron family) number of 1. 

Similar principles are used to assign lepton numbers of +1 or 

1 to the muon and the tau family members.

Lepton family number is also conserved in all reactions. 

For example, whenever a muon is created, an antimuon or 

an antimuon neutrino must also be created so that the total 

number of leptons in the muon family is always conserved.

Electric 

charge

‘Generation’

1 2 3

L
e

p
to

n

0

ν
e

(electron-

neutrino)  

M = 0 or 

almost 0

ν
μ

(muon-

neutrino) 

M = 0 or 

almost 0

ν
τ

(tau-neutrino) 

M = 0 or 

almost 0

1

e  

(electron)  

M = 0.511 

MeV c 2

μ

(muon)  

M = 105 

MeV c 2

τ

(tau)  

M = 1784 MeV 

MeV c 2

ExchangE particlEs
There are only four fundamental interactions that exist: Gravity, 

Electromagnetic, Strong and Weak.

All four interactions can be thought of as being mediated by an 

exchange of particles. Each interaction has its own exchange 

particle or particles. The bigger the mass of the exchange boson, 

the smaller the range of the force concerned.

The exchange results in repulsion between the two particles

From the point of view of quantum mechanics, the energy 

needed to create these virtual particles, ∆E is available so long 

as the energy of the particle does not exist for a longer time ∆t

than is proscribed by the uncertainty principle (see page 126).

The greater the mass of the exchange particle, the smaller the time 

for which it can exist. The range of the weak interaction is small 

as the masses of its exchange particles (W+, W and Z0) are large. 

In particle physics, all real particles can be thought of as being 

surrounded by a cloud of virtual particles that appear and 

disappear out of the surrounding vacuum. The lifetime of these 

particles is inversely proportional to their mass. The interaction 

between two particles takes place when one or more of the 

virtual particles in one cloud is absorbed by the other particle.

Interaction Relative 

strength

Range 

(m)

Exchange 

particle

Particles 

experience

Strong 1 ~10 15
8 different 

gluons

Quarks, 

gluons

Electromagnetic 10 2 innite photon Charged

Weak 10 13 ~10 18
W+, W , Z0 Quarks, 

lepton

Gravity 10 39 innite graviton All

Leptons and bosons are unaffected by the strong force.
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higgs boson
In addition to the three generations of leptons and quarks 

in the standard model there are the four classes of gauge 

boson and an additional highly massive boson, the Higgs 

boson. This was proposed in 1964 to explain the process by 

which particles can acquire mass. In 2013 scientists working 

with the Large Hadron Collider announced the experimental 

detection of a particle that that matched the standard model’s 

predictions for the Higgs boson.  

Quantum chromodynamics (Qcd)
The interaction between objects with colour is called the 

colour interaction and is explained by a theory called quantum 

chromodynamics. The force-carrying particle is called the gluon. 

There are eight different types of gluon each with zero mass. Each 

gluon carries a combination of colour and anticolour and their 

emission and absorption by different quarks causes the colour force. 

As the gluons themselves are coloured, there will be a colour 

interaction between gluons themselves as well as between quarks. 

The overall effect is that they bind quarks together. The force 

between quarks increases as the separation between quarks 

increases. Isolated quarks and gluons cannot be observed.

If sufcient energy is supplied to a hadron in order to attempt to 

isolate a quark, then more hadrons or mesons will be produced 

rather than isolated quarks. This is known as quark connement. 

The six colour-changing gluons are: G
rb

, G
rg

, G
bg

, G
br

, G
gb

, G
gr

For example when a blue up quark emits the gluon G
br

it loses 

its blue colour and becomes a red up quark (the gluon contains 

antired, so red colour must be left behind). A red down quark 

absorbing this gluon will become a blue down quark. 

There are two additional colour-neutral gluons: G
0
 and G

0
, 

making a total of eight gluons.

u

u

d

rgbr

GrbGrg

Grb Ggb Ggr
p

b

b

rg

u
bggbr

bggb

Grbπ+

r

Ggb G0 Gbg

d

strong intEraction
The colour interaction and the strong interaction are essentially 

the same thing. Properly, the colour interaction is the 

fundamental force that binds quarks together into baryons 

and mesons. It is mediated by gluons. The residual strong 

interaction is the force that binds colour-neutral particles (such 

as the proton and neutron) together in a nucleus. The overall 

effect of the interactions between all the quarks in the nucleons 

is a short-range interaction between colour-neutral nucleons.

The particles mediating the strong interaction can be 

considered to involve the exchange of composite particles  

(π mesons: π+, π  or π°) whereas the fundamental colour 

interaction is always seen as the exchange of gluons. 

standard modEl – Quarks
The standard model of particle physics is the theory that says 

that all matter is considered to be composed of combinations of 

six types of quark and six types of lepton. This is the currently 

accepted theory. Each of these particles is considered to be 

fundamental, which means they do not have any deeper 

structure. Gravity is not explained by the standard model.

All hadrons are made up from different combinations of 

fundamental particles called quarks. There are six different types 

of quark and six types of antiquark. This very neatly matches the 

six leptons that are also known to exist. Quarks are affected by 

the strong force (see below), whereas leptons are not. The weak 

interaction can change one type of quark into another.

Electric 

charge

‘Generation’

1 2 3

Q
u

a
rk

s

+
2
3

e

u  

(up) 

M = 5 MeV c 2

c  

(charm)  

M = 1500 MeV c 2

t

(top)  

M=174 MeV c 2

-
1
3

e

d  

(down)  

M = 10 MeV c 2

s 

(strange)  

M = 200 MeV c 2

b 

(bottom)  

M=4700 MeV c 2

All quarks have a baryon number of  + 
1
3

All antiquarks have a baryon number of -
1
3

All quarks have a strangeness number of 0 except the 

s quark that has a strangeness number of 1.

The c quark is the only quark with a charm number = +1, 

all other quarks have charm number of 0.

Isolated quarks cannot exist. They can exist only in twos or 

threes. Mesons are made from two quarks (a quark and an 

antiquark) whereas baryons are made up of a combination of 

three quarks (either all quarks or all antiquarks).

Name of particle Quark structure

Baryons proton (p)

neutron (n)

lambda Λ

antiproton (p)

u u d

u d d

u d s

u u d

Mesons π- (pi-minus)

π+ (pi-plus)

K0 (K
zero

)

d u

u d

d s

The force between quarks is still the strong interaction but 

the full description of this interaction is termed QCD theory – 

quantum chromodynamics. The quantum difference between 

the quarks is a property called colour. All quarks can be red (r), 

green (g) or blue (b). Antiquarks can be antired (r), antigreen (g) 

or antiblue (b). The two up quarks in a proton are not identical 

because they have different colours. 

Only white (colour neutral) combinations are possible. 

Baryons must contain r, g and b quarks (or r, g, b) whereas 

mesons contain a colour and the anticolour (e.g. r and r or b 

and b, etc.) The force between quarks is sometimes called the 

colour force. Eight different types of gluon mediate it.

The details of QCD do not need to be recalled.
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rulEs for draWing fEynman diagrams
Feynman diagrams can be used to represent possible particle 

interactions. The diagrams are used to calculate the overall 

probability of an interaction taking place. In quantum 

mechanics, in order to nd out the overall probability of an 

interaction, it is necessary to add together all the possible ways 

in which an interaction can take place. Used properly they are a 

mathematical tool for calculations but, at this level, they can be 

seen as a simple pictorial model of possible interactions.

In the Feynman diagrams below the x-axis represents time 

going from left to right and the y-axis represents space (some 

books reverse these two axes). To view them in the alternative 

way, turn the page anti-clockwise by 90°.

Some simple rules help in the construction of correct diagrams:

• Each junction in the diagram (vertex) has an arrow going 

in and one going out. These will represent a lepton–lepton 

transition or a quark–quark transition.

• Quarks or leptons are solid straight lines.

• Exchange particles are either wavy or broken (photons,  

W± or Z°) or curly (gluons).

• Time ows from left to right. Arrows from left to right 

represent particles travelling forward in time. Arrows from 

right to left represent antiparticles travelling forward in time.

• The labels for the different particles are shown at the end of 

the line.

• The junctions will be linked by a line representing the 

exchange particle involved.

ExamplEs

e

e

γ

 An electron emits a photon.
e

e

γ

An electron absorbs a photon.

e
+

e
+

γ

 A positron emits a photon.

γ

e
+

e
+

 A positron absorbs a photon.

e
γ

e
+

A photon produces an electron and a 

positron (an electron positron pair). γ
e

e
+

An electron and a positron meet and 

annihilate (disappear), producing a 

photon.

d

before after
W

ν
e

u

e

Beta decay. A down quark 

changes into an up quark 

with the emission of a W

particle. This decays into an 

electron and an antineutrino. 

The top vertex involves 

quarks, the bottom vertex 

involves leptons.

d

W+
ν

+

π+

u

Pion decay. The quark and antiquark annihilate to produce 

a W+ particle. This decays into an antimuon and a muon 

neutrino.

γ

γ
e
+

e An electron and positron annihilate 

to produce two photons.
π+

u u

g
d

d

An up quark (in a proton) emits 

a gluon which in turn transforms 

into a down/antidown quark pair. 

This reaction could take place as a 

result of a proton–proton collision:

p + p → p + n + π+

n

νe

p

e

W

Simple diagrams can also be 

drawn with exchanges between 

hadrons. 

Beta decay (hadron version)

p p

nn

π°

A π° mediates the strong nuclear 

force between a proton and a 

neutron in a nucleus.

usEs of fEynman diagrams
Once a possible interaction has been identied with a Feynman 

diagram, it is possible to use it to calculate the probabilities 

for certain fundamental processes to take place. Each line and 

vertex corresponds to a mathematical term. By adding together 

all the terms, the probability of the interaction can be calculated 

using the diagram. 

More complicated diagrams with the same overall outcome 

need to be considered in order to calculate the overall 

probability of a chosen outcome. The more diagrams that are 

included in the calculation, the more accurate the answer. 

In a Feynman diagram, lines entering or leaving the diagram 

represent real particles and must obey mass, energy and 

momentum relationships. Lines in intermediate stages in the 

diagram represent virtual particles and do not have to obey 

energy conservation providing they exist for a short enough 

time for the uncertainty relationship to apply. Such virtual 

particles cannot be detected. 
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ib Qe – , e  e 
1. A sample of radioactive material contains the element Ra 226. 

The half-life of Ra 226 can be dened as the time it takes for

A. the mass of the sample to fall to half its original value.

B. half the number of atoms of Ra 226 in the sample to decay.

C. half the number of atoms in the sample to decay.

D. the volume of the sample to fall to half its original value.

2. Oxygen-15 decays to nitrogen-15 with a half-life of 

approximately 2 minutes. A pure sample of oxygen-15, with a 

mass of 100 g, is placed in an airtight container. After 4 minutes, 

the masses of oxygen and nitrogen in the container will be

Mass of oxygen Mass of nitrogen

A. 0 g 100 g

B. 25 g 25 g

C. 50 g 50 g

D. 25 g 75 g

3. A radioactive nuclide 
Z
X undergoes a sequence of radioactive 

decays to form a new nuclide 
Z + 2

Y. The sequence of emitted 

radiations could be

A. β, β B. α, β, β

C. α, α D. α, β, γ

4. In the Rutherford scattering experiment, a stream of α

particles is red at a thin gold foil. Most of the α particles

A. are scattered randomly.

B. rebound.

C. are scattered uniformly.

D. go through the foil.

5. A piece of radioactive material now has about 1/16 of its 

previous activity. If the half-life is 4 hours the difference in 

time between measurements is approximately

A. 8 hours.

B. 16 hours.

C. 32 hours.

D. 60 hours.

6. a) Use the standard model to describe, in terms of 

fundamental particles, the internal structure of:

(i) A proton

(ii) An electron

(iii) Baryons

(iv) Mesons

b) Draw Feynman diagram for β+ decay.

7. A proton undergoes a strong interaction with a ϕ  particle 

(quark content: ud) to produce a neutron and another 

particle. Use conservation laws to deduce the structure of the 

particle produced in this reaction.

8. a) Two properties of the isotope of uranium, 92

238U are:

(i) it decays radioactively (to 90

234Th)

(ii) it reacts chemically (e.g. with uorine to form UF
6
).

What features of the structure of uranium atoms are 

responsible for these two widely different properties? [2]

b) A beam of deuterons (deuterium nuclei, 1

2H) are 

accelerated through a potential difference and are then 

incident on a magnesium target ( 12

26Mg). A nuclear reaction 

occurs resulting in the production of a sodium nucleus and 

an alpha particle.

(i) Write a balanced nuclear equation for  

this reaction. [2]

(ii) Explain why it is necessary to give the deuterons  

a certain minimum kinetic energy before they  

can react with the magnesium nuclei. [2]

9. Radioactive carbon dating

The carbon in trees is mostly carbon-12, which is  

stable, but there is also a small proportion of carbon-14, 

which is radioactive. When a tree is cut down, the carbon-14 

present in the wood at that time decays with a half-life of 

5,800 years.

a) Carbon-14 decays by beta-minus emission to nitrogen-14. 

Write the equation for this decay. [2]

b) For an old wooden bowl from an archaeological site, the 

average count-rate of beta particles detected per kg of 

carbon is 13 counts per minute. The corresponding count 

rate from newly cut wood is 52 counts per minute.

(i) Explain why the beta activity from the bowl 

diminishes with time, even though the probability of 

decay of any individual carbon-14 nucleus  

is constant. [3]

(ii) Calculate the approximate age of the  

wooden bowl. [3]

10. This question is about a nuclear ssion reactor for providing 

electrical power.

In a nuclear reactor, power is to be generated by the ssion 

of uranium-235. The absorption of a neutron by 235U results 

in the splitting of the nucleus into two smaller nuclei plus a 

number of neutrons and the release of energy. The splitting 

can occur in many ways; for example

n + 92

235U → 38

90Sr + 54

143Xe + neutrons + energy

a) The nuclear ssion reaction

(i) How many neutrons are produced in this  

reaction? [1]

(ii) Explain why the release of several neutrons in 

each reaction is crucial for the operation of a ssion 

reactor. [2]

(iii) The sum of the rest masses of the uranium plus 

neutron before the reaction is 0.22 u greater than 

thesum of the rest masses of the ssion products. 

What becomes of this ‘missing mass’? [1]

(iv) Show that the energy released in the above  

ssion reaction is about 200 MeV. [2]

b) A nuclear ssion power station

(i) Suppose a nuclear ssion power station generates 

electrical power at 550 MW. Estimate the minimum 

number of ssion reactions occurring each second in 

the reactor, stating any assumption you have made 

about efciency. [4]

11. Which of the following is a correct list of particles upon which 

the strong nuclear force may act?

A. protons and neutrons B. protons and electrons

C. neutrons and electrons D. protons, neutrons and electrons
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8 E N E R G Y  P R O D U C T I O N

ENERGY CONvERsIONs
The production of electrical power around the world is 

achieved using a variety of different systems, often starting 

with the release of thermal energy from a fuel. In principle, 

thermal energy can be completely converted to work in a 

single process, but the continuous conversion of this energy 

into work implies the use of machines that are continuously 

repeating their actions in a xed cycle. Any cyclical process 

must involve the transfer of some energy from the system 

to the surroundings that is no longer available to perform 

useful work. This unavailable energy is known as degraded 

energy, in accordance with the principle of the second law of 

thermodynamics (see page 162).

Energy conversions are represented using Sankey diagrams. 

An arrow (drawn from left to right) represents the energy 

changes taking place. The width of the arrow represents the 

power or energy involved at a given stage. Created or degraded 

energy is shown with an arrow up or down.

Note that Sankey diagrams are to scale. The width of the 

useful electrical output in the diagram on the right is 2.0 mm 

compared with 12.0 mm for the width of the total energy from 

the fuel. This represents an overall efciency of 16.7%.

ElECTRICal POwER PRODUCTION
In all electrical power stations the process is essentially the 

same. A fuel is used to release thermal energy. This thermal 

energy is used to boil water to make steam. The steam is used 

to turn turbines and the motion of the turbines is used to 

generate electrical energy. Transformers alter the potential 

difference (see page 114).

friction and heating 
losses

cooling tower 
losses (condenser)

heating and 
sound in 
transformers 

useful 
electrical output

energy in from fuel 

Sankey diagram representing the energy ow in a typical 

power station

POwER
Power is dened as the rate at which energy is converted. The units of power are J S 1 or W.

Power =
energy_
time

Energy nd poer genertion – sney digr

to transformer

steam

boiler

fuel (coal)

turbine

water

condenser

generator

Electrical energy generation
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Priry energy ource

RENEwablE / NON-RENEwablE ENERGY sOURCEs
The law of conservation of energy states that energy is neither 

created nor destroyed, it just changes form. As far as human 

societies are concerned, if we wish to use devices that require 

the input of energy, we need to identify sources of energy. 

Renewable sources of energy are those that cannot be used up, 

whereas non-renewable sources of energy can be used up and 

eventually run out.

Renewable sources Non-renewable sources

hydroelectric coal

photovoltaic cells oil

active solar heaters natural gas

wind nuclear

biofuels

Sometimes the sources are hard to classify so care needs to be 

taken when deciding whether a source is renewable or not. 

One point that sometimes worries students is that the Sun 

will eventually run out as a source of energy for the Earth, so 

no source is perfectly renewable! This is true, but all of these 

sources are considered from the point of view of life on Earth. 

When the Sun runs out, then so will life on Earth. Other things 

to keep in mind include:

• Nuclear sources (both ssion and fusion) consume a material 

as their source so they must be non-renewable.  

On the other hand, the supply available can make the source 

effectively renewable (fusion).

• It is possible for a fuel to be managed in a renewable or  

a non-renewable way. For example, if trees are cut  

down as a source of wood to burn then this is clearly  

non-renewable. It is, however, possible to replant trees at the 

same rate as they are cut down. If this is properly managed, 

it could be a renewable source of energy.

Of course these possible sources must have got their energy 

from somewhere in the rst place. Most of the energy used by 

humans can be traced back to energy radiated from the Sun, 

but not quite all of it. Possible sources are:

• the Sun’s radiated energy

• gravitational energy of the Sun and the Moon

• nuclear energy stored within atoms

• the Earth’s internal heat energy.

Although you might think that there are other sources of 

energy, the above list is complete. Many everyday sources of 

energy (such as coal or oil) can be shown to have derived their 

energy from the Sun’s radiated energy. On the industrial scale, 

electrical energy needs to be generated from another source. 

When you plug anything electrical into the mains electricity you 

have to pay the electricity-generating company for the energy 

you use. In order to provide you with this energy, the company 

must be using one (or more) of the original list of sources.

COmPaRIsON Of ENERGY sOURCEs

Fuel Renewable? CO
2

emission

Specic 

energy(MJ kg 1) 

(values vary 

depending on 

type)

Energy 

density  

(MJ m 3)

Coal No Yes 22–33 23,000

Oil No Yes 42 36,500

Gas No Yes 54 37

Nuclear 

(uranium)

No No 8.3 × 107 1.5 × 1012

Waste No Yes 10 variable

Solar Yes No n/a n/a

Wind Yes No n/a n/a

Hydro – water 

stored in dams

Yes No n/a n/a

Tidal Yes No n/a n/a

Pumped storage n/a No n/a n/a

Wave Yes No n/a n/a

Geothermal Yes No n/a n/a

Biofuels e.g. 

ethanol
Some types Yes 30 21,000

sPECIfIC ENERGY aND ENERGY

DENsITY
Two quantities are useful to consider 

when making comparisons between 

different energy sources – the specic 

energy and the energy density

Specic energy provides a useful 

comparison between fuels and is dened 

as the energy liberated per unit mass 

of fuel consumed. Specic energy is 

measured in J kg 1

specic energy 

=

energy released from fuel___
mass of fuel consumed

Fuel choice can be particularly 

inuenced by specic energy when 

the fuel needs to be transported: the 

greater the mass of fuel that needs to 

be transported, the greater the cost.

Energy density is dened as the energy 

liberated per unit volume of fuel 

consumed. The unit is J m 3

energy density 

=

energy release from fuel___
volume of fuel consumed
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foi ue poer production

ORIGIN Of fOssIl fUEl
Coal, oil and natural gas are known as fossil fuels. These 

fuels have been produced over a timescale that involves tens 

or hundreds of millions of years from accumulations of dead 

matter. This matter has been converted into fossil fuels by 

exposure to the very high temperatures and pressure that exist 

beneath the Earth’s surface.

Coal is formed from the dead plant matter that used to grow 

in swamps. Layer upon layer of decaying matter decomposed. 

As it was buried by more plant matter and other substances, 

the material became more compressed. Over the geological 

timescale this turned into coal.

Oil is formed in a similar manner from the remains of 

microscopic marine life. The compression took place under the 

sea. Natural gas, as well as occurring in underground pockets, 

can be obtained as a by-product during the production of oil. It is 

also possible to manufacture gas from coal.

ENERGY TRaNsfORmaTIONs
Fossil fuel power stations release energy in fuel by burning it. The thermal energy is then used to convert water into steam that 

once again can be used to turn turbines. Since all fossil fuels were originally living matter, the original source of this energy was the 

Sun. For example, millions of years ago energy radiated from the Sun was converted (by photosynthesis) into living plant matter. 

Some of this matter has eventually been converted into coal.

solar energy
photosynthesis chemical 

energy
in plants

compression chemical 
energy in

fossil fuels

Energy storage in fossil fuels

ExamPlE
Use the data on this page and the previous page to calculate 

the typical rate (in tonnes per hour) at which coal must be 

supplied to a 500 MW coal red power station. 

Answer
Electrical power supply = 500 MW = 5 × 108 J s 1

Power released from fuel = 5 × 108 / efciency  

= 5 × 108 / 0.35  

= 1.43 × 109 J s 1

Rate of consumption of coal = 1.43 × 109 / 3.3 × 107 kg s 1

= 43.3 kg s 1

= 43.3 × 60 × 60 kg hr 1

= 1.56 × 105 kg hr 1

≈ 160 tonnes hr 1

EffICIENCY Of fOssIl fUEl POwER sTaTIONs
The efciency of different power stations depends on the 

design. At the time of publishing, the following gures apply.

Fossil fuel Typical efciency Current 

maximum 

efciency

Coal 35% 42%

Natural gas 45% 52%

Oil 38% 45%

Note that thermodynamic considerations limit the maximum 

achievable efciency (see page 163).

aDvaNTaGEs aND DIsaDvaNTaGEs

Advantages 
• Very high ‘specic energy’ and ‘energy density’ – a great deal 

of energy is released from a small mass of fossil fuel.

• Fossil fuels are relatively easy to transport.

• Still cheap when compared to other sources of energy.

• Power stations can be built anywhere with good transport 

links and water availability.

• Can be used directly in the home to provide heating.

Disadvantages
• Combustion products can produce pollution, notably  

acid rain.

• Combustion products contain ‘greenhouse’ gases.

• Extraction of fossil fuels can damage the environment.

• Non-renewable.

• Coal-red power stations need large amounts of fuel.
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Nucer poer – proce

PRINCIPlEs Of ENERGY PRODUCTION
Many nuclear power stations use uranium-235 as the ‘fuel’. 

This fuel is not burned – the release of energy is achieved using 

a ssion reaction. An overview of this process is described on 

page 76. In each individual reaction, an incoming neutron 

causes a uranium nucleus to split apart. The fragments are 

moving fast. In other words the temperature is very high. 

Among the fragments are more neutrons. If these neutrons go 

on to initiate further reactions then a chain reaction is created. 

The design of a nuclear reactor needs to ensure that, on 

average, only one neutron from each reaction goes on to initiate 

a further reaction. If more reactions took place then the number 

of reactions would increase all the time and the chain reaction 

would run out of control. If fewer reactions took place, then the 

number of reactions would be decreasing and the ssion process 

would soon stop.

The chance that a given neutron goes on to cause a ssion 

reaction depends on several factors. Two important ones are:

• the number of potential nuclei ‘in the way’

• the speed (or the energy) of the neutrons.

As a general trend, as the size of a block of fuel increases so do the 

chances of a neutron causing a further reaction (before it is lost from 

the surface of the block). As the fuel is assembled together a stage 

is reached when a chain reaction can occur. This happens when a 

so-called critical mass of fuel has been assembled. The exact value of 

the critical mass depends on the exact nature of the fuel being used 

and the shape of the assembly.

There are particular neutron energies that make them more 

likely to cause nuclear ssion. In general, the neutrons created 

by the ssion process are moving too fast to make reactions 

likely. Before they can cause further reactions the neutrons 

have to be slowed down.

aDvaNTaGEs aND DIsaDvaNTaGEs

Advantages 
• Extremely high ‘specic energy’ – a great deal 

of energy is released from a very small mass 

of uranium.

• Reserves of uranium large compared to oil.

Disadvantages
• Process produces radioactive nuclear waste 

that is currently just stored.

• Larger possible risk if anything should go 

wrong.

• Non-renewable (but should last a long time).

mODERaTOR, CONTROl RODs aND hEaT

ExChaNGER
Three important components in the design of all 

nuclear reactors are the moderator, the control 

rods and the heat exchanger. 

• Collisions between the neutrons and the nuclei of 

the moderator slow them down and allow further 

reactions to take place.

• The control rods are movable rods that readily 

absorb neutrons. They can be introduced or 

removed from the reaction chamber in order to 

control the chain reaction.

• The heat exchanger allows the nuclear reactions 

to occur in a place that is sealed off from the rest 

of the environment. The reactions increase the 

temperature in the core. This thermal energy is 

transferred to heat water and the steam that is 

produced turns the turbines.

A general design for one type of nuclear reactor 

(PWR or pressurized water reactor) is shown here. 

It uses water as the moderator and as a coolant.

Pressurized water nuclear reactor (PWR)

concrete shields

control rods
(moveable)

pressurizer steam to
turbines

HOT
WATER

heat
exchange

secondary 
coolant 
circuit

moderator

fuel rods

pump

pump

steel pressure vessel

primary 
coolant 
circuit

distributors

kinetic energy

electrical

energy

nuclear 

energy

thermal

energy

to electricity 

consumers

to environment

thermal 

energy 

losses
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Nucer poer – ety nd ri

ENRIChmENT aND REPROCEssING
Naturally occurring uranium contains less than 1% of 

uranium-235. Enrichment is the process by which this 

percentage composition is increased to make nuclear ssion 

more likely.

In addition to uranium-235, plutonium-239 is also capable 

of sustaining ssion reactions. This nuclide is formed as a 

by-product of a conventional nuclear reactor. A uranium-238 

nucleus can capture fast-moving neutrons to form 

uranium-239. This undergoes β-decay to neptunium-239 

which undergoes further β-decay to plutonium-239:

   92

238 U + 0

1n →    92

239 U 

  92

239U →    93

239 Np + 1

    0β + υ

   93

239 Np →    94

239 Pu + 1

    0β + υ

Reprocessing involves treating used fuel waste from nuclear 

reactors to recover uranium and plutonium and to deal with 

other waste products. A fast breeder reactor is one design that 

utilizes plutonium-239.

NUClEaR wEaPONs 
A nuclear power station involves controlled nuclear ssion 

whereas an uncontrolled nuclear ssion produces the huge 

amount of energy released in nuclear weapons. Weapons have 

been designed using both uranium and plutonium as the fuel. 

Issues associated with nuclear weapons include:

• Moral issues associated with any weapon of aggression that 

is associated with warfare. Nuclear weapons have such 

destructive capability that since the Second World War the 

threat of their deployment has been used as a deterrent to 

prevent non-nuclear aggressive acts against the possessors 

of nuclear capability. 

• The unimaginable consequences of a nuclear war have 

forced many countries to agree to non-proliferation 

treaties, which attempt to limit nuclear power technologies 

to a small number of nations. 

• A by-product of the peaceful use of uranium for energy 

production is the creation of plutonium-239 which 

could be used for the production of nuclear weapons. Is 

it right for the small number of countries that already 

have nuclear capability to prevent other countries from 

acquiring that knowledge? 
hEalTh, safETY aND RIsk
Issues associated with the use of nuclear power stations for 

generation of electrical energy include:

• If the control rods were all removed, the reaction would 

rapidly increase its rate of production. Completely 

uncontrolled nuclear ssion would cause an explosion and 

thermal meltdown of the core. The radioactive material 

in the reactor could be distributed around the surrounding 

area causing many fatalities. Some argue that the terrible 

scale of such a disaster means that the use of nuclear 

energy is a risk not worth taking. Nuclear power stations 

could be targets for terrorist attacks.

• The reaction produces radioactive nuclear waste. 

While much of this waste is of a low level risk and will 

radioactively decay within decades, a signicant amount 

of material is produced which will remain dangerously 

radioactive for millions of years. The current solution is to 

bury this waste in geologically secure sites.

• The uranium fuel is mined from underground and any 

mining operation involves signicant risk. The ore is also 

radioactive so extra precautions are necessary to protect 

the workers involved in uranium mines. 

• The transportation of the uranium from the mine to a 

power station and of the waste from the nuclear power 

station to the reprocessing plant needs to be secure 

and safe.

• By-products of the civilian use of nuclear power can be 

used to produce nuclear weapons.

fUsION REaCTORs
Fusion reactors offer the theoretical potential of signicant 

power generation without many of the problems associated 

with current nuclear ssion reactors. The fuel used, hydrogen, 

is in plentiful supply and the reaction (if it could be sustained) 

would not produce signicant amounts of radioactive waste. 

The reaction is the same as takes place in the Sun (as outlined 

on page 76) and requires creating temperatures high enough 

to ionize atomic hydrogen into a plasma state (this is the 

‘fourth state of matter’, in which electrons and protons are 

not bound in atoms but move independently). Currently the 

principal design challenges are associated with maintaining 

and conning the plasma at sufciently high temperature and 

density for fusion to take place.
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sor poer nd ydroeectric poer

sOlaR POwER (TwO TYPEs)
There are two ways of harnessing the radiated energy that 

arrives at the Earth’s surface from the Sun. 

A photovoltaic cell (otherwise known as a solar cell or 

photocell) converts a portion of the radiated energy directly 

into a potential difference (‘voltage’). It uses a piece of 

semiconductor to do this. Unfortunately, a typical photovoltaic 

cell produces a very small voltage and it is not able to provide 

much current. They are used to run electrical devices that do 

not require a great deal of energy. Using them in series would 

generate higher voltages and several in parallel can provide a 

higher current.

solar radiation

metal layer

slices of

semiconductor

photocell

An active solar heater (otherwise known as a solar panel) is 

designed to capture as much thermal energy as possible. The 

hot water that it typically produces can be used domestically 

and would save on the use of electrical energy. 

copper pipe (black) reective insulator 
behind pipe

cold water in

glass/plastic 
cover

solar radiation

warmer 
water out

solar energy thermal energy
in water

active solar heater

aDvaNTaGEs aND DIsaDvaNTaGEs
Advantage
• Very ‘clean’ production – no harmful chemical by-products.

• Renewable source of energy.

• Source of energy is free.

Diadvantage
• Can only be utilized during the day.

• Source of energy is unreliable – could be a cloudy day.

• A very large area would be needed for a signicant amount 

of energy.

hYDROElECTRIC POwER
The source of energy in a hydroelectric power station is the 

gravitational potential energy of water. If water is allowed to move 

downhill, the owing water can be used to generate electrical energy.

The water can gain its gravitational potential energy in several ways.

• As part of the ‘water cycle’, water can fall as rain. It can be 

stored in large reservoirs as high up as is feasible.

• Tidal power schemes trap water at high tides and release it 

during a low tide.

• Water can be pumped from a low reservoir to a high 

reservoir. Although the energy used to do this pumping must 

be more than the energy regained when the water ows 

back down hill, this ‘pumped storage’ system provides one 

of the few large-scale methods of storing energy.

aDvaNTaGEs aND DIsaDvaNTaGEs
Advantage
• Very ‘clean’ production – no harmful chemical  

by-products.

• Renewable source of energy.

• Source of energy is free.

Diadvantage 
• Can only be utilized in particular areas.

• Construction of dams will involve land being submerged 

under water.

gravitational

PE of water
KE of water +

energy lost due to friction throughout
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sECONDaRY ENERGY sOURCEs
By far the most common primary energy sources in use worldwide 

are the three main fossil fuels: oil, coal and natural gas. With the 

inclusion of uranium, at the time of writing this guide, this accounts 

for 90% of the world’s energy consumption. Other primary fuels 

include the renewables: solar, wind, tidal, biomass and geothermal.

With global energy demand expected to rise in the future, the 

hope is that developments with renewable energy can help to 

reduce the dependence on fossil fuels.

Primary energy sources are not convenient for individual users 

and typically a conversion process takes place that results in a 

secondary energy source that can be widely used in society. 

The most common secondary sources are electrical energy (a 

very versatile secondary source) or rened fuels (e.g. petrol).

The storage of electrical energy is a challenge, with everyday 

devices (e.g. batteries or capacitors) having a very limited 

capability when compared with typical everyday demands. 

Power companies need to vary the generation of electrical 

energy to match consumer demand. Currently pumped storage 

hydroelectric systems are the only viable large-scale method 

of storing spare electrical energy capacity for future use. The 

efciency of a typical system is approximately 75% meaning 

that one quarter of the energy supplied is wasted.

NEw aND DEvElOPING TEChNOlOGIEs
It is impossible to predict technological developments that are 

going to take place over the coming years. Current models, 

however, predict a continuing dependence on the use of fossil 

fuels for many years to come. The hope is that we will be able 

to decrease this dependency over time. It is important to be 

aware of the development of new technologies particularly 

those associated with:

• renewable energy sources 

• improving the efciency of our energy conversion process.

wind poer nd oter tecnoogie

ENERGY TRaNsfORmaTIONs
There is a great deal of kinetic energy involved in the 

winds that blow around the Earth. The original source 

of this energy is, of course, the Sun. Different parts of 

the atmosphere are heated to different temperatures. 

The temperature differences cause pressure differences, 

due to hot air rising or cold air sinking, and thus air 

ows as a result. 

blades turn

wind

electric energy
energy lost

due to friction

throughout

heating
Earth

KE of turbine

aDvaNTaGEs aND DIsaDvaNTaGEs

Advantage
• Very ‘clean’ production – no harmful 

chemical by-products.

• Renewable source of energy.

• Source of energy is free. 

Diadvantage
• Source of energy is unreliable – could 

be a day without wind.

• A very large area would need be covered 

for a signicant amount of energy.

• Some consider large wind generators 

to spoil the countryside.

• Can be noisy.

• Best positions for wind generators are 

often far from centres of population.

maThEmaTICs

wind speed ν

density of air ρ

r

The area ‘swept out’ by the blades of the turbine = A = πr
2

In one second the volume of air that passes the turbine = vA

So mass of air that passes the turbine in one second = vAρ

Kinetic energy m available per second =
1
2
mv

2

=
1
2

(vAρ)v2

=
1
2
Aρv

3

In other words, power available =
1
2
Aρv

3

In practice, the kinetic energy of the incoming wind is easy to 

calculate, but it cannot all be harnessed as the air must continue to 

move – in other words the wind turbine cannot be one hundred per 

cent efcient. A doubling of the wind speed would mean that the 

available power would increase by a factor of eight.
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CONvECTION
In convection, thermal energy moves between two points because 

of a bulk movement of matter. This can only take place in a uid

(a liquid or a gas). When part of the uid is heated it tends to 

expand and thus its density is reduced. The colder uid sinks and 

the hotter uid rises up. Central heating causes a room to warm 

up because a convection current is set up as shown below. 

Cool air is denser and 
sinks downwards.

The ow of air around a room 
is called a convection current.

Air is warmed 
by the heater.

Hot air is less dense 

Convection in a room

Points to note:

• Convection cannot take place in a solid.

Examples:

• The pilots of gliders (and many birds) use naturally occurring 

convection currents in order to stay above the ground.

• Sea breezes (winds) are often due to convection. During 

the day the land is hotter than the sea. This means hot air 

will rise from above the land and there will be a breeze 

onto the shore. During the night, the situation is reversed.

• Lighting a re in a chimney will mean that a breeze ows 

in the room towards the re.

Ter energy trner

PROCEssEs Of ThERmal ENERGY TRaNsfER
There are several processes by which the transfer of thermal 

energy from a hot object to a cold object can be achieved. Three 

very important processes are called conduction, convection

and radiation. Any given practical situation probably involves 

more than one of these processes happening at the same time. 

There is a fourth process called evaporation. This involves the 

faster moving molecules leaving the surface of a liquid that is 

below its boiling point. Evaporation causes cooling.

CONDUCTION
In thermal conduction, thermal energy is transferred along 

a substance without any bulk (overall) movement of the 

substance. For example, one end of a metal spoon soon feels 

hot if the other end is placed in a hot cup of tea. 

Conduction is the process by which kinetic energy is passed 

from molecule to molecule.

microscopic view

Thermal energy ows along the material as a result 
of the temperature dierence across its ends.

HOT COLD

The faster-moving molecules at the hot end pass 
on their kinetic energy to the slower-moving 

molecules as a result of intermolecular collisions.

macroscopic view

HOT

thermal energy

RESERVOIR

COLD

thermal energy

RESERVOIR

Points to note:

• Poor conductors are called thermal insulators

• Metals tend to be very good thermal conductors. This is 

because a different mechanism (involving the electrons) 

allows quick transfer of thermal energy.

• All gases (and most liquids) tend to be poor conductors.

Examples:

• Most clothes keep us warm by trapping layers of air – a 

poor conductor.

• If one walks around a house in bare feet, the oors that are 

better conductors (e.g. tiles) will feel colder than the oors 

that are good insulators (e.g. carpets) even if they are at 

the same temperature. (For the same reason, on a cold day 

a piece of metal feels colder than a piece of wood.)

• When used for cooking food, saucepans conduct thermal 

energy from the source of heat to the food.

ExamPlE
cork – a poor conductor

outer plastic cover

partial vacuum between
glass walls to prevent
convection and
conduction

insulating space

hot liquid

surfaces silvered
so as to reduce
radiation
         air gap
(poor conductor)

A thermos ask prevents heat loss

RaDIaTION
Matter is not involved in the transfer of thermal energy by 

radiation. All objects (that have a temperature above zero 

kelvin) radiate electromagnetic waves. If you hold your 

hand up to a re to ‘feel the heat’, your hands are receiving 

the radiation.

For most everyday 

objects this radiation is 

in the infra-red part of 

the electromagnetic 

spectrum.  For 

more details of the 

electromagnetic spectrum, 

see page 37.

Points to note:

• An object at room temperature absorbs and radiates 

energy. If it is at constant temperature (and not changing 

state) then the rates are the same.

• A surface that is a good radiator is also a good absorber.

• Surfaces that are light in colour and smooth (shiny) are 

poor radiators (and poor absorbers).

• Surfaces that are dark and rough are good radiators (and 

good absorbers).

• If the temperature of an object is increased then the 

frequency of the radiation increases. The total rate at 

which energy is radiated will also increase.

• Radiation can travel through a vacuum (space).

Examples:

• The Sun warms the Earth’s surface by radiation.

• Clothes in summer tend to be white – so as not to absorb 

the radiation from the Sun.

radiation is

given  o from

all surfaces.

HOT

OBJECT
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Rdition: wien’  nd te sten–botnn 

blaCk-bODY RaDIaTION: sTEfaN-bOlTzmaNN law
In general, the radiation given out from a hot object depends 

on many things. It is possible to come up with a theoretical 

model for the ‘perfect’ emitter of radiation. The ‘perfect’ 

emitter will also be a perfect absorber of radiation – a black 

object absorbs all of the light energy falling on it. For this 

reason the radiation from a theoretical ‘perfect’ emitter is 

known as black-body radiation

Black-body radiation does not depend on the nature of the 

emitting surface, but it does depend upon its temperature. 

At any given temperature there will be a range of different 

wavelengths (and hence frequencies) of radiation that are 

emitted. Some wavelengths will be more intense than others. 

This variation is shown in the graph below.
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To be absolutely precise, it is not correct to label the y-axis on 

the above graph as the intensity, but this is often done. It is 

actually something that could be called the intensity function. 

This is dened so that the area under the graph (between two 

wavelengths) gives the intensity emitted in that wavelength 

range. The total area under the graph is thus a measure of the 

total power radiated. The power radiated by a Black-body (See 

page 195) is given by: 

Total power radiated in W Stefan-Boltzmann constant

Surface area in m2

P = σAT 4

Although stars and planets are not perfect emitters, their radiation 

spectrum is approximately the same as black-body radiation. 

INTENsITY, I
The intensity of radiation is the power per unit area that is 

received by the object. The unit is W m 2

I =
Power_

A

wIEN’s law
Wien’s displacement law relates the wavelength at which 

the intensity of the radiation is a maximum λ
max

 to the 

temperature of the black body T. This states that

λ
max

T = constant

The value of the constant can be found by experiment. It is 

2.9 × 10–3 m K. It should be noted that in order to use this 

constant, the wavelength should be substituted into the 

equation in metres and the temperature in kelvin.

The peak wavelength from the Sun 

is approximately 500 nm.

λ
max

= 500 nm

= 5 × 10 7 m

so T =
2.9 × 10 3_
5 × 10 7

 K

= 5800 K
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wavelength / nm

max = 500 nmλ

λ
max

 (metres) =
2.90 × 10 3_
T(kelvin)

We can analyse light from a star and calculate a value for 

its surface temperature. This will be much less than the 

temperature in the core. Hot stars will give out all frequencies 

of visible light and so will tend to appear white in colour. 

Cooler stars might well only give out the higher wavelengths 

(lower frequencies) of visible light – they will appear red. 

Radiation emitted from planets will peak in the infra-red.

EqUIlIbRIUm aND EmIssIvITY
If the temperature of a planet is constant, then the power being 

absorbed by the planet must equal the rate at which energy is 

being radiated into space. The planet is in thermal equilibrium. 

If it absorbs more energy than it radiates, then the temperature 

must go up and if the rate of loss of energy is greater than its rate 

of absorption then its temperature must go down.

In order to estimate the power absorbed or emitted, the 

following concepts are useful. 

Emissivity
The Earth and its atmosphere are not a perfect black body. 

Emissivity, e, is dened as the ratio of power radiated per unit 

area by an object to the power radiated per unit area by a black 

body at the same temperature. It is a ratio and so has no units.

e =
power radiated by object per unit area____________________________________________

power radiated per unit area by black body at same temperature

thus

p = eσAT 4

albEDO
Some of the radiation received by a planet is reected straight 

back into space. The fraction that is reected back is called the 

albedo, α. 

The Earth’s albedo varies daily and is dependent on season 

(cloud formations) and latitude. Oceans have a low value but 

snow has a high value. The global annual mean albedo is 0.3 

(30%) on Earth.

albedo =
total scattered power__
total incident power
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sor poer

sOlaR CONsTaNT
The amount of power that arrives from the Sun is measured by the solar constant. It is properly dened as the amount of solar 

energy that falls per second on an area of 1 m2 above the Earth’s atmosphere that is at right angles to the Sun’s rays. Its average 

value is about 1400 W m 2. 

This is not the same as the power that arrives on 1 m2 of the Earth’s surface. Scattering and absorption in the atmosphere means 

that often less than half of this arrives at the Earth’s surface. The amount that arrives depends greatly on the weather conditions.

stratosphere

troposphere

1% absorbed

in stratosphere

incoming solar

radiation

100% NB These gures are only guidelines

because gures vary with cloud cover,

water vapour, etc.

clouds reect 23%

clouds absorb 3%

surface of

the Earth

4% reected from

the Earth’s surface

24% absorbed

in troposphere

24% direct 21% diuse

45% reaches Earth’s surface

Fate of incoming radiation

Different parts of the Earth’s surface (regions at different latitudes) will receive different amounts of solar radiation. The amount 

received will also vary with the seasons since this will affect how spread out the rays have become.
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Tropic of Cancer

Tropic of C apricorn

atmosphere is a near-uniform 
thickness all around the Earth

North Pole

Equator

South Pole

60̊

23.5̊

60̊90̊

30̊

30̊

0̊

incoming solar
radiation
travelling in
near parallel
lines

R SM

N

P
T

Q

U

MN > PQ

RS   > TU

Radiation has to travel through a 
greater depth of atmosphere (RS as

compared with TU) in high latitudes. 
When it reaches the surface the radiation 

is also spread out over a greater area (MN as
compared with PQ) than in lower latitudes.

The effect of latitude on incoming solar radiation

Tropic of

Cancer

Tropic of

Capricorn
SUN

Summer

in northern hemisphere
Summer

in southern hemisphere

The Earth’s orbit and the seasons
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Te greenoue eect

PhYsICal PROCEssEs
Short wavelength radiation is received from 

the Sun and causes the surface of the Earth 

to warm up. The Earth will emit infra-red 

radiation (longer wavelengths than the 

radiation coming from the Sun) because 

the Earth is cooler than the Sun. Some of 

this infra-red radiation is absorbed by gases 

in the atmosphere and re-radiated in all 

directions. 

This is known as the greenhouse effect 

and the gases in the atmosphere that absorb 

infra-red radiation are called greenhouse 

gases. The net effect is that the upper 

atmosphere and the surface of the Earth are 

warmed. The name is potentially confusing, 

as real greenhouses are warm as a result of 

a different mechanism.

The temperature of the Earth’s surface will 

be constant if the rate at which it radiates 

energy equals the rate at which it absorbs 

energy. The greenhouse effect is a natural 

process and without it the temperature 

of the Earth would be much lower; the 

average temperature of the Moon is more 

than 30 °C colder than the Earth.

GREENhOUsE GasEs
The main greenhouse gases are naturally occurring but the 

balance in the atmosphere can be altered as a result of their 

release due to industry and technology. They are:

• Methane, CH
4
. This is the principal component of 

natural gas and the product of decay, decomposition or 

fermentation. Livestock and plants produce signicant 

amounts of methane.

• Water, H
2
O. The small amounts of water vapour in the upper 

atmosphere (as opposed to clouds which are condensed water 

vapour) have a signicant effect. The average water vapour 

levels in the atmosphere do not appear to alter 

greatly as a result of industry, but local levels 

can vary. 

• Carbon dioxide, CO
2
. Combustion releases 

carbon dioxide into the atmosphere which can 

signicantly increase the greenhouse effect. 

Overall, plants (providing they are growing) 

remove carbon dioxide from the atmosphere 

during photosynthesis. This is known as 

carbon xation

• Nitrous oxide, N
2
O. Livestock and industries 

(e.g. the production of Nylon) are major sources 

of nitrous oxide. Its effect is signicant as it can 

remain in the upper atmosphere for long periods.

In addition the following gases also contribute to the 

greenhouse effect:

• Ozone, O
3
. The ozone layer is an important 

region of the atmosphere that absorbs high 

energy UV photons which would otherwise be 

harmful to living organisms. Ozone also adds to 

the greenhouse effect.

• Chlorouorocarbons (CFCs). Used as refrigerants, 

propellants and cleaning solvents. They also have the effect 

of depleting the ozone layer.

Each of these gases absorbs infra-red radiation as a result of 

resonance (see page 168). The natural frequency of oscillation of 

the bonds within the molecules of the gas is in the infra-red region. 

If the driving frequency (from the radiation emitted from the Earth) 

is equal to the natural frequency of the molecule, resonance will 

occur. The amplitude of the molecules’ vibrations increases and the 

temperature will increase. The absorption will take place at specic 

frequencies depending on the molecular energy levels.

1
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CH
4

Nitrous oxide
N
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O

Oxygen, O
2

& Ozone, O
3

Carbon
dioxide
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Absorption spectra for major natural
greenhouse gases in the Earth’s atmosphere
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[After J.N. Howard, 1959: Proc. I.R. 47, 1459: and R.M. Goody
and G.D. Robinson, 1951: Quart. J. Roy Meteorol. Soc. 77, 153]

E

Some solar radiation is
reected by the atmosphere

and Earth’s surface
Outgoing solar radiation:

103 W m 2

Solar energy is absorbed by the
Earth’s surface and arms it

1 W m 2
and is conerted into heat causing
the emission of longae infrared

rediation bac to the atmosphere

Surface gains more heat and
infrared radiation is emitted again

Some of the infrared radiation is
absorbed and reemitted by the
greenhouse gas molecules he

direct eect is the arming of the
Earth’s surface and the troposphere

Some of the infrared
radiation passes through

the atmosphere and is
lost in space

Solar radiation passes 
through the clear atmosphere

ncoming solar radiation:

33 W m 2

S  

G R E E N H O U S E  G A S E S

   O S   E  E

E    

Sources: Oanagan niersity ollege in anada epartment of eography niersity of Oford 
nited States Enironmental rotection gency E Washington limate change 1 he
science of climate change contribution of oring group 1 to the second assessment report of the 
ntergoernmental anel on limate hange E and WO ambridge ress 1

Net incoming

solar radiation:

240 W m 2

Solar energy absorbed

2 W m 2

by atmosphere:

Net outgoing infra-red 

radiation: 240 W m 2
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Go ring

POssIblE CaUsEs Of GlObal waRmING
Records show that the mean temperature of the Earth has been 

increasing in recent years.

0.6

0.4

0.2

0

0.2

0.4

1880 1900 1920 1940 1960 1980 2000

annual mean
5-year mean

All atmospheric models are highly complicated. Some possible 

suggestions for this increase include.

• Changes in the composition of greenhouse gases in the 

atmosphere. 

• Changes in the intensity of the radiation emitted by the Sun 

linked to, for example, increased solar are activity.

• Cyclical changes in the Earth’s orbit and volcanic activity. 

The rst suggestion could be caused by natural effects or could 

be caused by human activities (e.g. the increased burning of 

fossil fuels). An enhanced greenhouse effect is an increase 

in the greenhouse effect caused by human activities. 

In 2013, the IPCC (Intergovernmental Panel on Climate 

Change) report stated that ‘It is extremely likely that human 

inuence has been the dominant cause of the observed 

warming since the mid–20th century’. 

Although it is still being debated, the generally accepted view 

is that that the increased combustion of fossil fuels has released 

extra carbon dioxide into the atmosphere, which has enhanced 

the greenhouse effect. 

EvIDENCE fOR GlObal waRmING
One piece of evidence that links global warming to increased levels of greenhouse gases comes from ice core data. The ice core has 

been drilled in the Russian Antarctic base at Vostok. Each year’s new snow fall adds another layer to the ice. 

Isotopic analysis allows the temperature to be estimated and air bubbles trapped in the ice cores can be used to measure the 

atmospheric concentrations of greenhouse gases. The record provides data from over 400,000 years ago to the present. The 

variations of temperature and carbon dioxide are very closely correlated.
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mEChaNIsms
Predicting the future effects of global warming involves a great 

deal of uncertainty, as the interactions between different systems 

in the Earth and its atmosphere are extremely complex.

There are many mechanisms that may increase the rate of 

global warming. 

• Global warming reduces ice/snow cover, which in turn 

reduces the albedo. This will result in an increase in the 

overall rate of heat absorption.

• Temperature increase reduces the solubility of CO
2
 in the sea 

and thus increases atmospheric concentrations.

• Continued global warming will increase both evaporation 

and the atmosphere’s ability to hold water vapour. Water 

vapour is a greenhouse gas.

• Regions with frozen subsoil exist (called tundra) that support 

simple vegetation. An increase in temperature may cause a 

signicant release of trapped CO
2

• Not only does deforestation result in the release of further 

CO
2
 into the atmosphere, the reduction in number of trees 

reduces carbon xation.

The rst four mechanisms are examples of processes whereby a 

small initial temperature increase has gone on to cause a further 

increase in temperature. This process is known as positive 

feedback. Some people have suggested that the current 

temperature increases may be ‘corrected’ by a process which 

involves negative feedback, and temperatures may fall in the future. 
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1. A wind generator converts wind energy into electric energy. 

The source of this wind energy can be traced back to solar 

energy arriving at the Earth’s surface.

a) Outline the energy transformations involved as  

solar energy converts into wind energy. [2]

b) List one advantage and one disadvantage of the  

use of wind generators. [2]

The expression for the maximum theoretical power, P, 

available from a wind generator is

P =
1
2
Aρv3

where A is the area swept out by the blades,

ρ is the density of air and

v is the wind speed.

c) Calculate the maximum theoretical power, P, for  

a wind generator whose blades are 30 m long  

when a 20 m s 1 wind blows. The density of air  

is 1.3 kg m 3. [2]

d) In practice, under these conditions, the generator  

only provides 3 MW of electrical power.

(i) Calculate the efciency of this generator. [2]

(ii) Give two reasons explaining why the actual  

power output is less than the maximum  

theoretical power output. [2]

2. This question is about energy sources.

a) Give one example of a renewable energy source and  

one example of a non-renewable energy source and 

explain why they are classied as such. [4]

b) A wind farm produces 35,000 MWh of energy in a  

year. If there are ten wind turbines on the farm  

show that the average power output of one

turbine is about 400 kW. [3]

c) State two disadvantages of using wind power to generate 

electrical power. [2]

3. This question is about energy transformations.

Wind power can be used to generate electrical energy.

Construct an energy ow diagram which shows the energy 

transformations, starting with solar energy and ending with 

electrical energy, generated by windmills. Your diagram 

should indicate where energy is degraded. [7]

4. This question is about a coal-red power station which is 

water cooled.

Data:

Electrical power output from  

the station = 200 MW 

Temperature at which water  

enters cooling tower = 288 K

Temperature at which water  

leaves cooling tower = 348 K

Rate of water ow through tower = 4000 kg s 1

Energy content of coal = 2.8 × 107 J kg 1

Specic heat of water = 4200 J kg–1 K 1

Calculate

a) the energy per second carried away by the water  

in the cooling tower; [2]

b) the energy per second produced by burning the coal; [2]

c) the overall efciency of the power station; [2]

d) the mass of coal burnt each second. [1]

5. This question is about tidal power systems.

a) Describe the principle of operation of such a system. [2]

b) Outline one advantage and one disadvantage of  

using such a system. [2]

c) A small tidal power system is proposed. Use the data in 

the table below to calculate the total energy available and 

hence estimate the useful output power of this system.

Height between high tide and  

low tide 4 m

Trapped water would cover an  

area of 1.0 × 106 m2

Density of water 1.0 × 103 kg m–3

Number of tides per day 2 [4]

6. Solar power and climate models.

a) Distinguish, in terms of the energy changes involved, 

between a solar heating panel and a photovoltaic cell. [2]

b) State an appropriate domestic use for a

(i) solar heating panel. [1]

(ii) photovoltaic cell. [1]

c) The radiant power of the Sun is 3.90 × 1026 W. The 

average radius of the Earth’s orbit about the Sun is  

1.50 × 1011 m. The albedo of the atmosphere is 0.300  

and it may be assumed that no energy is absorbed by  

the atmosphere.

Show that the intensity incident on a solar heating panel 

at the Earth’s surface when the Sun is directly overhead  

is 966 W m 2. [3]

d) Show, using your answer to (c), that the average intensity 

incident on the Earth’s surface is 242 Wm 2. [3]

e) Assuming that the Earth’s surface behaves as a black-body 

and that no energy is absorbed by the atmosphere, use 

your answer to (d) to show that the average temperature 

of the Earth’s surface is predicted to be 256 K. [2]

f) Outline, with reference to the greenhouse effect, why  

the average surface temperature of the Earth is higher 

than 256 K. [4]

Ib quetion – energy production
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IdentIfIcatIon of Shm
In order to analyse a situation to decide if SHM is taking place, 

the following procedure should be followed.

• Identify all the forces acting on an object when it is 

displaced an arbitrary distance x from its rest position using 

a free-body diagram.

• Calculate the resultant force using Newton’s second law. If 

this force is proportional to the displacement and always 

points back towards the mean position (i.e. F ∝ x) then 

the motion of the object must be SHM.

• Once SHM has been identied, the equation of motion 

must be in the following form:

a = - (restoring force per unit displacement, k____
oscillating mass, m ) × x

• This identies the angular frequency ω as ω2 = ( k_
m) or 

ω = √( k
m). Identication of ω allows quantitative 

equations to be applied.

acceLeratIon, veLocIty and dISpLacement 
durIng Shm
The variation with time of the acceleration, a, velocity, v,  

and displacement, x, of an object doing SHM depends on the 

angular frequency ω.

The precise format of the relationships depends on where the 

object is when the clock is started (time t = zero). The left 

hand set of equations correspond to an oscillation when the 

object is in the mean position when t = 0. The right hand set 

of equations correspond to an oscillation when the object is at 

maximum displacement when t = 0.

x = x
0
 sin ωt x = x

0
 cos ωt

v = ωx
0
 cos ωt v = -ωx

0
 sin ωt

a = -ω2 x
0
 sin ωt a = -ω2 x

0
 cos ωt

The rst two equations can be rearranged to produce the 

following relationship:

v = ± ω√
_______
(x

0
x2)

x
0
 is the amplitude of the oscillation measured in m

t is the time taken measured in s

ω  is the angular frequency measured in rad s–1

ω t is an angle that increases with time measured in radians. A 

full oscillation is completed when (ω t) = 2π rad.

The angular frequency is related to the time period T by the 

following equation.

T = 2π_
ω = 2π√m_

k

• acceleration leads velocity by 90°

• velocity leads displacement by 90°

• acceleration and displacement are 180° out of phase

• displacement lags velocity by 90°

• velocity lags acceleration by 90°

exampLe 
A 600 g mass is attached to a light spring with spring constant 

30 N m–1. 

(a) Show that the mass does SHM. 

(b) Calculate the frequency of its oscillation.

(a) Weight of mass = mg = 6.0 N

Additional displacement x down means that resultant force 

on mass = k x upwards. Since F ∝ x, the mass will oscillate 

withSHM.

(b) Since SHM, T = 2π√
____

(m

k ) = 2π√
_____

(0.6_
30 ) = 0.889s

f = 1
T

= 1_
0.889

= 1.1 Hz

SImpLe harmonIc motIon (Shm) equatIon
SHM occurs when the forces on an object are such that 

the resultant acceleration, a, is directed towards, and is 

proportional to, its displacement, x, from a xed point. 

a ∝ -x or a = -(constant) × x

The mathematics of SHM is simplied if the constant of 

proportionality between a and x is identied as the square 

of another constant ω which is called the angular frequency. 

Thus the general form for the equation that denes SHM is: 

a = -ω2 x

The solutions for this equation follow below. The angular 

frequency ω has the units of rad s 1 and is related to the time 

period, T, of the oscillation by the following equation. 

ω = 2π_
T

tWo exampLeS of Shm
Two common situations that approximate to SHM are:

1. Mass, m, on a vertical spring 

Provided that:

• the mass of the spring is negligible compared to the 

mass of the load

• friction (air friction) is negligible

• the spring obeys Hooke’s law with spring constant, k at 

all times (i.e. elastic limit is not exceeded)

• the gravitational eld strength g is constant

• the xed end of the spring cannot move.

Then it can be shown that: 

ω2 = k
m

Or T = 2π√m

k

2. The simple pendulum of length l and mass m

Provided that:

• the mass of the string is negligible compared with the 

mass of the load

• friction (air friction) is negligible

• the maximum angle of swing is small (≤ 5° or 0.1 rad)

• the gravitational eld strength g is constant

• the length of the pendulum is constant. 

Then it can be shown that: 

ω2 =
g

l

Or T = 2π√ l
g

Note that the mass of the pendulum bob, m, is not in this 

equation and thus does not affect the time period of the 

pendulum, T

displacement

velocity

acceleration

timeT

4

T

2

3T

4
T

x0
ωx0

ω
2x0
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During SHM, energy is interchanged between KE and PE. 

Providing there are no resistive forces which dissipate this 

energy, the total energy must remain constant. The oscillation is 

said to be undamped

The kinetic energy can be calculated from 

E
k 
= 

1
2

mv2 =
1
2

m ω
2 (x

0
x2)

The potential energy can be calculated from 

E
p
= 

1
2

m ω
2x2

The total energy is

E= E
k 
+ E

p 
= 

1
2

m ω
2 (x

0
x2)+ 

1
2

mω
2x2 = 

1
2

m ω
2 x

0

Energy in SHM is proportional to:

• the mass m

• the (amplitude)2

• the (frequency)2

e s i sil i ihL

E

p

total

k

x0x0

Graph showing the

variation with distance, x

of the energy,  during SHM

x

t

Graph showing the

variation with time, t

of the energy, 

during SHM   

p

k

total



T

4

T

2

T

2

3T

4
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BaSIc oBServatIonS
Diffraction is a wave effect. The objects involved  

(slits, apertures, etc.) have a size  

that is of the same order of magnitude  

as the wavelength of visible light.

n 

bsl 

gil

sw

dii



() straight

        edge 

(b) single

        long slit

        b ~ 3λ

() circular

() single

        long slit

        b ~ 5λ

SIngLe-SLIt dIffractIon WIth WhIte LIght
When a single slit is illuminated with white light, each 

component colour has a specic wavelength and so the 

associated maxima and minima for each wavelength will be 

located at a different angle. For a given slit width, colours 

with longer wavelengths (red, orange, etc.) will diffract more 

than colours with short wavelengths (blue, violet, etc.). The 

maxima for the resulting diffraction pattern will show all the 

colours of the rainbow with blue and violet nearer to the 

central position and red appearing at greater angles.

incident white light

rst order

Red

Violet

Violet

Red

rst order

zero order

diihL

The angle of the rst minimum is given by sin θ

For small angles, this can be simplied to θ =   .

intensity

10

1.1
0.4

There is a central maximum intensity.

Other maxima occur roughly halfay

beteen the minima.

s the angle increases, 

the intensity of the

maxima decreases.

b = slit idth
angle

1st minimum
λ
b

θ =

λ
b

λ
b

θ =
λ
b

θ =λ
b

The intensity plot for a single slit is:

expLanatIon
The shape of the relative intensity versus angle plot can be 

derived by applying an idea called Huygens’ principle. We 

can treat the slit as a series of secondary wave sources. In the 

forward direction (θ = zero) these are all in phase so they add 

up to give a maximum intensity. At any other angle, there is a 

path difference between the rays that depends on the angle. 

The overall result is the addition of all the sources. The condition 

for the rst minimum is that the angle must make all of the 

sources across the slit cancel out.

The condition for the rst maximum out from the centre is 

when the path difference across the whole slit is 3λ
2

. At this 

angle the slit can be analysed as being three equivalent sections 

each having a path difference of λ
2
 across its length. Together, 

two of these sections will destructively interfere leaving the 

resulting amplitude to be 1
3
 of the maximum. Since intensity 

∝ (amplitude)2, the rst maximum intensity out from the 

centre will be 1
9
 of the central maximum intensity. By a similar 

argument, the second maximum intensity out from the centre will 

have 1
5
 of the maximum amplitude and thus be 1

25
 of the central 

maximum intensity.

b

path dierence across slit = b sin θ

b sin θ = λ

sin θ ≈ θ

For 1st minimum: 

∴sin θ =

Since angle is small, 

for 1st minimum

λ

b

∴ θ =
λ

b

θ
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tw-s i  ws: y’s bl-

sli i

hL

douBLe-SLIt Interference
The double-slit interference pattern shown on page 47 was derived assuming that each slit was behaving like a perfect point source. 

This can only take place if the slits are innitely small. In practice they have a nite width. The diffraction pattern of each slit needs 

to be taken into account when working out the overall double slit interference pattern as shown below.

Decreasing the slit width will mean that the observed pattern becomes more and more ‘idealized’. Unfortunately, it will also mean 

that the total intensity of light will be decreased. The interference pattern will become harder to observe.

angle θ

angle θ

still applies but dierent fringes

will have dierent intensities with

it being possible for some fringes

to be missing.

angle θ

(a) Young’s fringes for innitely narrow slits

(b) diraction pattern for a nite-width slit

(c) Young’s fringes for slits of nite width

relative intensity

intensity

intensity

bright

fringes

λD

d
s =

InveStIgatIng young’S douBLe-SLIt experImentaLLy
Possible set-ups for the double-slit experiment are shown on 

page 47.

source
slit

monochromatic
light source

twin source
slits (less than 5 mm)

separation
of slits

region in which
superposition occurs

possible
screen
positions 

1 m0.1 m

S0

S1

S2

In the original set-up (set-up 1) light from the monochromatic 

source is diffracted at S
0
 so as to ensure that S

1
 and S

2
 are 

receiving coherent light. Diffraction takes place providing S
1

and S
2
 are narrow enough. The slit separations need to be 

approximately 1 mm (or less) thus the slit widths are of the 

order of 0.1 mm (or less). This would provide fringes that 

were separated by approximately 0.5mm on a screen (semi-

transparent or translucent) situated 1m away. The laboratory 

will need to be darkened to allow the fringes to be visible and 

they can be viewed using a microscope. 

The most accurate measurements for slit separation and fringe 

width are achieved using a travelling microscope. This is a 

microscope that is mounted on a frame so that it can be moved 

perpendicular to the direction in which it is pointing. The 

microscope is moved across ten or more fringes and the distance 

moved by the microscope can be read off from the scale. The 

precision of this measurement is often improved by utilizing a 

vernier scale. 

In the simplied version (set-up 2) of the experiment, fringes 

can still be bright enough to be viewed several metres away 

from the slits and thus they can be projected onto an opaque 

screen (it is dangerous to look into a laser beam). Their 

separation can be then be directly measured with a ruler.

Set-up 2

laser double

slit

screen

Set-up 1
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uSeS
One of the main uses of a diffraction grating is the accurate 

experimental measurement of the different wavelengths of 

light contained in a given spectrum. If white light is incident 

on a diffraction grating, the angle at which constructive 

interference takes place depends on wavelength. Different 

wavelengths can thus be observed at different angles. The 

accurate measurement of the angle provides the experimenter 

with an accurate measurement of the exact wavelength 

(and thus frequency) of the colour of light that is being 

considered. The apparatus that is used to achieve this accurate 

measurement is called a spectrometer. 

white

light white central 

maximum

third (and part of the fourth) 

order spectrum not shown

diraction

grating

R

R

R

R

V

V

V

V

1st order

2nd order

the dIffractIon gratIng
The diffraction that takes place at an individual slit affects 

the overall appearance of the fringes in Young’s double-

slit experiment (see page 98 for more details). This section 

considers the effect on the nal interference pattern of adding 

further slits. A series of parallel slits (at a regular separation) is 

called a diffraction grating

Additional slits at the same separation will not affect the 

condition for constructive interference. In other words, the 

angle at which the light from slits adds constructively will  

be unaffected by the number of slits. The situation is  

shown below.

d

path dierence θ

θ

between slits = d sin θ

For constructive
interference:

path dierence = nλ

between slits [λ, 2λ, 3λ]

nλ = d sin θ

This formula also applies to the Young’s double-slit 

arrangement. The difference between the patterns is most 

noticeable at the angles where perfect constructive interference 

does not take place. If there are only two slits, the maxima will 

have a signicant angular width. Two sources that are just out 

of phase interfere to give a resultant that is nearly the same 

amplitude as two sources that are exactly in phase. 

time

resultant interference

pattern

source A

source B

The addition of more slits will mean that each new slit is 

just out of phase with its neighbour. The overall interference 

pattern will be totally destructive.

overall interference pattern is totally destructive

time

The addition of further slits at the same slit separation has the 

following effects:

• the principal maxima maintain the same separation

• the principal maxima become much sharper

• the overall amount of light being let through is increased, 

so the pattern increases in intensity.

(a) 2 slits

(b) 4 slits

(c) 50 slits

Grating patterns
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exampLe
The equations in the box on the right work out the angles for 

which constructive and destructive interference take place for a 

given wavelength. If the source of light is an extended source, the 

eye receives rays leaving the lm over a range of values for θ

If white light is used then the situation becomes more 

complex. Provided the thickness of the lm is small, then one 

or two colours may reinforce along a direction in which others 

cancel. The appearance of the lm will be bright colours, such 

as can be seen when looking at 

• an oil lm on the surface of water or

• soap bubbles.

rays from an 

extended source eye focused 

at innity

appLIcatIonS
Applications of parallel thin lms include:

• The design of non-reecting radar coatings for military 

aircraft. If the thickness of the extra coating is designed so 

that radar signals destructively interfere when they reect 

from both surfaces, then no signal will be reected and an 

aircraft could go undetected.

• Measurements of thickness of oil slicks caused by spillage. 

Measurements of the wavelengths of electromagnetic signals 

that give constructive and destructive interference (at known 

angles) allow the thickness of the oil to be calculated.

• Design of non-reecting surfaces for lenses (blooming), solar 

panels and solar cells. A strong reection at any of these surfaces 

would reduce the amount of energy being usefully transmitted. 

A thin surface lm can be added so that destructive interference 

takes place for a typical wavelength and thus maximum 

transmittance takes place at this wavelength.

phaSe changeS
There are many situations when interference can take place 

that also involve the reection of light. When analysing 

in detail the conditions for constructive or destructive 

interference, one needs to take any phase changes into 

consideration. A phase change is the inversion of the wave 

that can take place at a reection interface, but it does not 

always happen. It depends on the two media involved.

The technical term for the inversion of a wave is that it has 

‘undergone a phase change of π’. 

• When light is reected back from an optically denser 

medium there is a phase change of π

• When light is reected back from an optically less dense 

medium there is no phase change.

n1 < n2

n1

n2

incident wave

transmitted wave

(no phase change)

reected wave

(no phase change)

n1 < n2

n1

n2

incident wave

transmitted wave 

(no phase change)

reected wave

(π phase change)

condItIonS for Interference patternS
A parallel-sided lm can produce interference as a result of the 

reections that are taking place at both surfaces of the lm.

thickness d
lm

(refractive index = n) 

A
C

D

E

B

ϕ

ϕ

ϕ

air

air

From point A, there are two possible paths: 

These rays then interfere and we need to calculate

the optical path difference. 

In addition, the phase change at A is equivalent to     path  

difference. 

1. along path AE in air

2. along ABCD in the film of thickness d

The path AE in air is equivalent to CD in the film

So path difference = (AB + BC) in the film.

λ
2

F

= zero
when viewed

along the normal

= 2dn cos ϕ +

if 2dn cos ϕ = mλ : destructive

if 2dn cos ϕ = m + : constructive

So total path difference = (AB + BC) in film 

By geometry:

λ

λ

2

λ

2

λ

2
= n(AB + BC) +

(AB + BC) = FC

= 2 d cos ϕ

∴  path difference

m = 0,1,2,3,4

λ

2

or when ϕ = 0, 2dn = mλ: destructive

or when ϕ = 0, 2dn = mλ: constructive

ti lll lshL
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dIffractIon and reSoLutIon

If two sources of light are very close in angle to one 

another, then they are seen as one single source of light. If 

the eye can tell the two sources apart, then the sources are 

said to be resolved. The diffraction pattern that takes place 

at apertures affects the eye’s ability to resolve sources. The 

examples to the right show how the appearance of two line 

sources will depend on the diffraction that takes place at 

a slit. The resulting appearance is the addition of the two 

overlapping diffraction patterns. The graph of the resultant 

relative intensity of light at different angles is alsoshown.

These examples look at the situation of a line source of light 

and the diffraction that takes place at a slit. A more common 

situation would be a point source of light, and the diffraction 

that takes place at a circular aperture. The situation is exactly 

the same, but diffraction takes place all the way around the 

aperture. As seen on page 97, the diffraction pattern of the 

point source is thus concentric circles around the central 

position. The geometry of the situation results in a slightly 

different value for the rst minimum of the diffraction 

pattern. 

For a slit, the rst minimum was at the angle 

θ =
λ

b

For a circular aperture, the rst minimum is at the angle 

θ =
1.22 λ_

b

If two sources are just resolved, then the rst minimum of 

one diffraction pattern is located on top of the maximum of 

the other diffraction pattern. This is known as the Rayleigh 

criterion. 

exampLe

Late one night, a student was observing a 

car approaching from a long distance away. 

She noticed that when she rst observed the 

headlights of the car, they appeared to be 

one point of light. Later, when the car was 

closer, she became able to see two separate 

points of light. If the wavelength of the light 

can be taken as 500 nm and the diameter of 

her pupil is approximately 4 mm, calculate 

how far away the car was when she could 

rst distinguish two points of light. Take the 

distance between the headlights to be 1.8 m.

When just resolved

θ =
1.22 × λ_

b

 =
1.22 × 5 × 10 7
__

0.004

 = 1.525 × 10 4

Since θ small

θ =
1.8_
x

 [x is distance to car]

⇒ x =
1.8__

1.525 × 10 4

= 11.803

≃ 12 km

rslihL

reSoLvance of dIffractIon gratIngS

As a result of Rayleigh’s criterion, there is a limit placed 

on a grating’s ability to resolve different wavelengths. The 

resolvance, R, of a diffraction grating is dened as the ratio 

between a wavelength being investigated, λ, and the smallest 

possible resolvable wavelength difference, Δλ. 

R =
λ_

Δλ

For any given grating, R is dependent on the diffraction order, 

m, being observed (rst order: m = 1; second order: m = 2, etc.) 

and the total number of slits, N, on the grating that are being 

illuminated.

R =
λ_

Δλ
 = mN

Example: 

In the sodium emission spectrum there are two wavelengths 

that are close to one another (the Na D-lines). These are 

589.00 nm and 589.59 nm. In order for these to be resolved by 

a diffraction grating, the resolvance must be 

R =
λ_

Δλ
=

589.00_
0.59

= 1000

In the rst order spectrum, at least 1000 slits must be 

illuminated whereas in the second order spectrum, the 

requirement drops to only 500 slits.

(a) resolved

re
la

ti
ve

 in
te

n
si

ty

angle θ

appearance

two sources clearly separate

(b) just resolved

appearance

resultant intensity

of source A

diraction pattern 

of source B

slightly dimmer

two maxima visible

angle θ

(c) not resolved

angle

appearance

resultant intensity

of source A

diraction pattern 

of source B

appears as one source

θ
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movIng Source 
Source moves from A to D with velocity, u , speed of waves is v

stationary

observer

receives sound

at lower frequency

stationary

observer

receives sound

at higher frequency

moving source

A BC D

ust

oλ

Received
frequency
at P

Received
frequency
at Q

f '= f v
v us

f '= f v
v+ us

f '= f v
v± us

mathematIcS of the doppLer effect 
Mathematical equations that apply to sound are 

stated on this page.

Unfortunately the same analysis does not apply to light 

– the velocities can not be worked out relative to the 

medium. It is, however, possible to derive an equation 

for light that turns out to be in exactly the same form as 

the equation for sound as long as two conditions are met:

• the relative velocity of source and detector is used 

in the equations.

• this relative velocity is a lot less than the speed of light.

Providing v << c

relative speed of 

source and observer

speed of light

change in 

frequency

change wavelength 

due to relative motion

relative motion
source

Δf_
f

= 
Δλ_
λ

≈ 
v
c

doppLer effect
The Doppler effect is the name given to the change of frequency 

of a wave as a result of the movement of the source or the 

movement of the observer. 

When a source of sound is moving:

• Sound waves are emitted at a particular frequency from the 

source.

• The speed of the sound wave in air does not change, but 

the motion of the source means that the wave fronts are all 

‘bunched up’ ahead of the source. 

• This means that the stationary observer receives sound 

waves of reduced wavelength.

• Reduced wavelength corresponds to an increased frequency 

of sound.

The overall effect is that the observer will hear sound at a 

higher frequency than it was emitted by the source. This applies 

when the source is moving towards the observer. A similar 

analysis quickly shows that if the source is moving away from 

the observer, sound of a lower frequency will be received. 

A change of frequency can also be detected if the source is 

stationary, but the observer is moving.

• When a police car or ambulance passes you on the road, you can 

hear the pitch of the sound change from high to low frequency. It 

is high when it is approaching and low when it is going away.

• Radar detectors can be used to measure the speed of a 

moving object. They do this by measuring the change in the 

frequency of the reected wave.

• For the Doppler effect to be noticeable with light waves, the 

source (or the observer) needs to be moving at high speed. 

If a source of light of a particular frequency is moving away 

from an observer, the observer will receive light of a lower 

frequency. Since the red part of the spectrum has lower 

frequency than all the other colours, this is called a red shift. 

• If the source of light is moving towards the observer, there 

will be a blue shift

t dl hL

movIng oBServer

S
O

uo

in a time t, observer has moved uot

If observer is moving away from source:

If observer is moving towards source: 

f '= f v uo

v

f '= f v+ uo

v

f'= f v± uo

v

exampLe
The frequency of a car’s horn is 

measured by a stationary observer as 

200 Hz when the car is at rest. What 

frequency will be heard if the car is 

approaching the observer at  

30 m s 1? (Speed of sound in air is  

330 m s 1.)

f = 200 Hz

f’ = ?

u
s 
= 30 m s 1

v = 330 m s 1

f = 200 ( 300_
300  30)

= 200 × 1.1

= 220 Hz
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1. Train going through a station

The sound emitted by a moving train’s whistle is of constant 

frequency, but the sound received by a passenger standing 

on the platform will change. At any instant of time, it is 

the resolved component of the train’s velocity towards the 

passenger that is used to calculate the frequency received.

received frequency 

timetrain passing

through station 

2. Radars – speed measurement

In many countries the police use radar to measure speed of 

vehicles to see if they are breaking the speed limit.

reected

wave

transmitted

RADAR wave
RADAR

transmitter moving car

V

λ

λ'
stationary

Police

• Pulse of microwave radiation of known frequency 

emitted.

• Pulse is reected off moving car and received back at 

source.

• Difference in emitted and received frequencies is used to 

calculate speed of car.

• Double Doppler effect taking place:

◊ Moving car receives a frequency that is higher than 

emitted as it is a moving observer.

◊ Moving car acts as a moving source when sending 

signal back.

3. Medical physics – blood ow measurements

Doctors can use a pulse of ultrasound to measure the speed of 

red blood cells in an analogous way that a pulse of microwaves 

is used to measure the speed of a moving car (above).

ν
s

red blood cell

reected

sound

transmitter

incident

sound

receiver

skin

4. Receding galaxies – red shift

• The relative intensities of the different wavelengths of 

light received from the stars in distant galaxies can be 

analysed.

• The light shows a characteristic absorption spectrum.

• The measured wavelengths are not the same as those 

associated with particular elements as measured in the 

laboratory.

• For the vast majority of stars, all the received frequencies 

have been shifted towards the red end of the visible 

spectrum (i.e. to lower frequencies). The light shows a 

red shift (see page 202).

• The magnitude of the red shift is used to calculate the 

recessional velocity and provides evidence for the Big 

Bang model of the creation of the Universe.

5. Rotating object

The rotation of luminous objects (e.g. the Sun) can be 

measured by looking for a different Doppler shift on one 

side of the object compared with the other.

light red shifted rotating star

view above pole

light blue shifted

6. Broadening of spectral lines

• Absorption and emission spectra provide evidence for 

discrete atomic energy levels (see page 69).

• Precise measurements show that each individual level 

is actually equivalent to a small but dened wavelength 

range.

• The gas molecules are moving so light from molecules 

will be subjected to Doppler shift.

• Different molecules have a range of speeds so there 

will be a general Doppler broadening of the discrete 

wavelengths.

• A higher temperature means a wider distribution of 

kinetic energies and hence more broadening to the 

spectral line. 

els  liis   dl hL
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1. When a train travels towards you sounding its whistle, the 

pitch of the sound you hear is different from when the train 

is at rest. This is because

A. the sound waves are travelling faster toward you.

B. the wave fronts of the sound reaching you are spaced 

closer together.

C. the wave fronts of the sound reaching you are spaced 

further apart.

D. the sound frequency emitted by the whistle changes with 

the speed of the train.

2. A car is travelling at constant speed towards a stationary 

observer whilst its horn is sounded. The frequency of the note 

emitted by the horn is 660 Hz. The observer, however, hears a 

note of frequency 720 Hz.

a) With the aid of a diagram, explain why a higher  

frequency is heard. [2]

b) If the speed of sound is 330 m s 1, calculate the  

speed of the car. [2]

3. This question is about using a diffraction grating to view  

the emission spectrum of sodium.

Light from a sodium discharge tube is incident normally 

upon a diffraction grating having 8.00 × 105 lines per metre. 

The spectrum contains a double yellow line of wavelengths 

589nm and 590 nm.

a) Determine the angular separation of the two lines when 

viewed in the second order spectrum. [4]

b) State why it is more difcult to observe the double  

yellow line when viewed in the rst order spectrum. [1]

4. This question is about thin lm interference.

A transparent thin lm is sometimes used to coat spectacle 

lenses as shown in the diagram below.

boundary A boundary B

glass lens, refractive

index = 1.53

coating, refractive

index = 1.30

air, refractive

index = 1.00

incoming

light

a) State the phase change which occurs to light that

 (i) is transmitted at boundary A into the lm. [1]

 (ii) is reected at boundary B. [1]

 (iii)  is transmitted at boundary A from the lm into  

the air. [1]

b) Light of wavelength 570 nm in air is incident on the 

coating. Determine the smallest thickness of the coating 

required so that the reection is minimized for normal 

incidence. [2]

5. Simple harmonic motion and the greenhouse effect

a) A body is displaced from equilibrium. State the two

conditions necessary for the body to execute simple 

harmonic motion. [2]

b) In a simple model of a methane molecule, a hydrogen 

atom and the carbon atom can be regarded as two 

massesattached by a spring. A hydrogen atom is 

much lessmassive than the carbon atom such that any 

displacement of the carbon atom may be ignored.

 The graph below shows the variation with time t of 

thedisplacement x from its equilibrium position of a 

hydrogen atom in a molecule of methane.

t / ×10 13s

x / ×10 10m

 2.0

 1.5

 1.0

 0.5

0.0

0.5

1.0

1.5

2.0

 The mass of hydrogen atom is 1.7 × 10 27 kg. Use data 

from the graph above

 (i) to determine its amplitude of oscillation. [1]

 (ii)  to show that the frequency of its oscillation is  

9.1 × 1013 Hz. [2]

 (iii)  to show that the maximum kinetic energy of the 

hydrogen atom is 6.2 × 10 18 J. [2]

c) Sketch a graph to show the variationwith time t of 

the velocity v of the hydrogen atom for one period of 

oscillation starting at t = 0. (There is no need to add 

valuesto the velocity axis.) [3]

d) Assuming that the motion of the hydrogen atom is 

simpleharmonic, its frequency of oscillation f is given 

bythe expression

f = 1_
2π√k_

m
p

 where k is the force per unit displacement between a 

hydrogen atom and the carbon atom and m
p
 is the mass 

ofa proton.

 (i)  Show that the value of k is approximately  

560 N m 1. [1]

 (ii)  Estimate, using your answer to (d)(i), the 

maximumacceleration of the hydrogen atom. [2]

e) Methane is classied as a greenhouse gas.

 (i) Describe what is meant by a greenhouse gas. [2]

 (ii)  Electromagnetic radiation of frequency  

9.1 × 1013 Hz is in the infrared region of the 

electromagnetic spectrum. Suggest, based on 

theinformation given in (b)(ii), why methane is 

classied as a greenhouse gas. [2]

IB Questions – wave phenomenaHL
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Potential, V (gravitational 
or electric)
The eld (gravitational or electric) is 

dened as the force per unit test point 

object placed at a particular point in 

the eld. In an analogous denition, 

the potential (gravitational, V
g
, or 

electric,V
e
) is dened as the energy per 

unit test point object that the object 

has as a result of the eld. The full 

mathematical relationships are shown 

on page 110.

Gravitational potential, V
g
=

energy_
mass

Units of V
g
= J kg 1

Electric potential, V
e
=

energy_
charge

Units of V
e
= J C 1 (or volts)

Potential difference ∆V (electric and gravitational)
Potential is the energy per unit test object. In general, moving a mass between two 

points, A and B, in a gravitational eld (or moving a charge between two points, 

A and B, in an electric eld) means that work is done. When work is done, the 

potential at A and the potential at B will be different. Between the points A and B, 

there will be a potential difference, ∆V

• If positive work is done on a test object as it moves between two points then the 

potential between the two points must increase.  

• If work is done by the test object as it moves between the two points then the 

potential between the two points must decrease.  

Gravitational potential difference between two points, 

∆V
g
=

work done moving a test mass___
test mass

Units of ∆V
g
= J kg–1

Electric potential difference between two points, 

∆V
e
=

work done moving a test charge___
test charge

Units of ∆V
e
= J C 1 or V (volts)

Thus to calculate the work done, W, in moving a charge q or a mass m between two 

points in a eld we have:

W = q∆V
e

W = m∆V
g

describing fields:   e
The concept of eld lines can be used to visually represent:

• the gravitational eld, g, around a mass (or collection of 

masses)

• the electric eld, E, around a charge (or collection of 

charges).

Magnetic elds can also be represented using eld lines (see 

page 61). In all cases the eld is the force per unit test point 

object placed at a particular point in the eld with:

• gravitational eld = force per unit test point mass 

(units: N kg 1)

• electric eld = force per unit test point positive charge 

(units: N C 1)

Forces are vectors and eld lines represent both the magnitude 

and the direction of the force that would be felt by a test object.

• The magnitude of the force is represented by how close 

the eld lines are to one another (for an example of a 

more precise denition, see denition of magnetic ux on 

page 112).

• The direction of the force is represented by the direction of 

the eld lines.

This means that, for both gravitational and electric elds, as a 

test object is moved:

• along a eld line, work will be done (force and distance 

moved are in the same direction)

• at right angles to a eld line, no work will be done (force 

and distance moved are perpendicular).

An alternative method of mapping the elds around an object 

is to consider the energy needed to move between points in the 

eld. This denes the new concepts of electric potential and 

gravitational potential (see below). 

10 f i e l d s

P (  )Hl
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equiPotential surfaces
The best way of representing how the electric potential varies 

around a charged object is to identify the regions where the 

potential is the same. These are called equipotential surfaces. 

In two dimensions they would be represented as lines of 

equipotential. A good way of visualizing these lines is to start 

with the contour lines on a map.

shallow

3-d surface

steep

contour lines
close

contour lines
further apart

contour lines

The contour diagram on the right represents the changing 

heights of the landscape on the left. Each line joins up points 

that are at the same height. Points that are high up represent a 

high value of gravitational potential and points that are low 

down represent a low gravitational potential. Contour lines are 

lines of equipotential in a gravitational eld.

The same can be done 

with an electric eld. 

Lines are drawn joining 

up points that have the 

same electric potential. 

The situation rightshows 

the equipotentials for an 

isolatedpositive point 

charge.

10 V20 V
30 V

40 V

point
charge

examPles of equiPotentials
The diagrams below show equipotential lines for various 

situations.

50

25

100
200

+40 V

+30 V
+20 V

+10 V

+

all ve with units

of J kg 1 

positively
charged
sphere

mass

Equipotentials outside a charge-conducting sphere and a 

point mass.

150 V 150 V
100 V

50 V

200 J kg 1

150 J kg 1

100 J kg 1

Equipotentials for two point charges (same charge) and two 

point masses.

-60 V60 V

0 V

-40 V

-20 V20 V

40 V

+ -

80 V -80 V

Equipotentials for two point charges (equal and opposite 

charges).

60 V
+V = 70 V

50 V
40 V
30 V
20 V
10 V
0 V

zero potential often
taken to be negative
terminal of battery

d

Equipotential lines between charged parallel plates.

It should be noted that although the correct denition of 

zero potential is at innity, most of the time we are not 

really interested in the actual value of potential, we are only 

interested in the value of the difference in potential. This means 

that in some situations (such as the parallel conducting plates) it 

is easier to imagine the zero at a different point. This is just like 

setting sea level as the zero for gravitational contour lines rather 

than correctly using innity for the zero.

relationsHiP to field lines
There is a simple relationship between electric eld lines and 

lines of equipotential – they are always at right angles to one 

another. Imagine the contour lines. If we move along a contour 

line, we stay at the same height in the gravitational eld. This 

does not require work because we are moving at right angles 

to the gravitational force. Whenever we move along an electric 

equipotential line, we are moving between points that have the 

same electric potential – in other words, no work is being done. 

Moving at right angles to the electric eld is the only way to 

avoid doing work in an electric eld. Thus equipotential lines 

must be at right angles to eld lines as shown below.

eld line

equipotential 

lines

always at 90°

Field lines and equipotentials are at right angles

epHl
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escaPe sPeed
The escape speed of a rocket is the speed needed to be able to 

escape the gravitational attraction of the planet. This means 

getting to an innite distance away.

We know that gravitational  

potential at the surface of a planet = -GM_
R

p

(where R
p

is the radius of the planet)

This means that for a rocket of  

mass m, the difference between  

its energy at the surface and at innity = GMm_
R

p

Therefore the minimum kinetic energy needed = GMm_
R

p

In other words,

1
2

m (v
esc

)2 = GMm_
R

p

so

v
esc

= √
______

(2GM_
R

p
)

This derivation assumes the planet is isolated.

examPle
The escape speed from an isolated planet like Earth (radius of 

Earth R
E
= 6.37 × 106 m) is calculated as follows:

v
esc

= √
__________________________

(2 × 6.67 × 10 11 × 5.98 × 1024
___

6.37 × 106 m )
= √(1.25 × 108) m s 1

= 1.12 × 104 m s 1

≈ 11 km s 1

The vast majority of rockets sent into space are destined to 

orbit the Earth so they leave with a speed that is less than the 

escape speed.

gravitational Potential
We can dene the gravitational potential V

g
that measures 

the energy per unit test mass. 

V
g
= W_

m
(work done)__
(test mass)

The SI units of gravitational potential are J kg 1. It is a scalar 

quantity.

Using Newton’s law of universal gravitation, we can work out 

the gravitational potential at a distance r from any point mass.

Vg=-
GM

r

Vg

r

This formula and the graph also works for spherical masses 

(planets etc.). The gravitational potential as a result of lots of 

masses is just the addition of the individual potentials. This is 

an easy sum since potential is a scalar quantity.

potential due to 

m1=-40 J kg 1
potential due to 

m2=-30 J kg 1A

overall potential

= (-40) + (-30) J kg 1

=-70 J kg 1
m1 m2

Once you have the potential at one point and the potential at 

another, the difference between them is the energy you need 

to move a unit mass between the two points. It is independent 

of the path taken.

gravitational Potential energy
It is easy to work out the difference in gravitational energy 

when a mass moves between two different heights near the 

Earth’s surface.

The difference in energies = mg(h
2
 - h

1
)

There are two important points to note:

• this derivation has assumed that the gravitational eld 

strength g is constant. However, Newton’s theory of 

universal gravitation states that the eld MUST CHANGE 

with distance. This equation can only be used if the 

vertical distance we move is not very large.

• the equation assumes that the gravitational potential energy 

gives zero PE at the surface of the Earth. This works for 

everyday situations but it is not fundamental.

The true zero of gravitational potential energy is taken as innity.

If the potential energy of the mass, m, was zero at innity, and 

it lost potential energy moving in towards mass M, the potential 

energy must be negative at a given point, P.

The value of gravitational potential energy of a mass at any 

point in space is dened as the work done in moving it from 

innity to that point. The mathematics needed to work this out 

is not trivial since the force changes with distance.

It turns out that

Gravitational potential energy of mass m = - G M m_
r

                      (due to M)

This is a scalar quantity (measured in joules) and is independent 

of the path taken from innity.

as m moves towards M in the force on m increases

M
F4 m m m mF3 F2 F1

potential energy decreases as

gravitational force does work

zero of potential energy taken

to be at innity
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o Hl

energy of an orbiting satellite

We already know that the gravitational energy = -GMm_
r

The kinetic energy = 1
2

m v2 but v = √
_____

(GM_
r )
(Circular motion)

∴ kinetic energy = 1
2

m
GM_

r
= 1

2
GMm_

r

So total energy = KE + PE 

= 1
2

GMm_
r

GMm_
r

= -1
2

GMm_
r

Note that:

• In the orbit the magnitude of the KE = 1
2

 magnitude 

of the PE.

• The overall energy of the satellite is negative. (A satellite 

must have a total energy less than zero otherwise it would 

have enough energy to escape the Earth’s gravitional eld.)

• In order to move from a small radius orbit to a large radius 

orbit, the total energy must increase. To be precise, an 

increase in orbital radius makes the total energy go from a 

large negative number to a smaller negative number – this 

is an increase.

This can be summarized in graphical form.

gravitational potential

energy in orbit

orbital

radius
total energy

kinetic energy

in orbit

en
er

g
y

gravitational Potential gradient

In the diagram below, a point test mass m moves in a 

gravitational eld from point A to point B.

The difference in gravitational potential, ΔV
g

=
average force × distance moved______________________

m = -g×∆r

The negative sign is because g is directed towards M, but the force 

doing the work is directed away from M and thus in the opposite 

direction from g. Since the gravitational force is attractive, work 

has to be done in going from A to B, so the potential at A <
potential at B.

∆r

distance rmass M

A B

(towards M)

distance moved

average eld between A and B, g=
Faverage

m

ΔV
g
= -g × Δr

g = -ΔV_
∆r

ΔV___
∆r

 is called the potential gradient. It has units of J kg 1 m 1

(which are the same as N kg 1 or m s 2).

The gravitational eld strength is equal to minus the potential 

gradient. The equivalent relationship also applies for electric 

elds (see page 109).

WeigHtlessness

One way of dening the weight of a person is to 

say that it is the value of the force recorded on a 

supporting scale.

If the scales were set up in a lift, they would 

record different values depending on the 

acceleration of the lift.

An extreme version of these situations occurs if 

the lift cable breaks and the lift (and passenger) 

accelerates down at 10 m s–2. 

no weight will

be recorded

on scales

accelerating down at 10 m s 2

a= 10 m s 2

W

R= zero

resultant force

down =W

orbital path
is a circle

velocity

gravitational attraction on 
astronaut provides centripetal 
force needed to stay in orbit

The person would appear to be weightless for the duration of the fall. Given 

the possible ambiguity of the term ‘weight’, it is better to call this situation 

the apparent weightlessness of objects in free-fall together. 

An astronaut in an orbiting space station would also appear weightless. The 

space station and the astronaut are in free-fall together. 

In the space station, the gravitational pull on the astronaut provides the 

centripetal force needed 

to stay in the orbit. This 

resultant force causes the 

centripetal acceleration. 

The same is true for the 

gravitational pull on the 

satellite and the satellite’s 

acceleration. There is no 

contact force between the 

satellite and the astronaut 

so, once again, we have 

apparent weightlessness.



109f ields

e p   pHl

Potential and Potential difference
The concept of electrical potential difference between two points was introduced 

on page 105. As the name implies, potential difference is just the difference 

between the potential at one point and the potential at another. Potential is 

simply a measure of the total electrical energy per unit charge at a given point 

in space. The denition is very similar to that of gravitational potential.

potential increases

as charge is moved 

in against repulsion

zero of potential 

taken to be at 

innity

F4
q F3

q F2
q F1

As q comes in the force on q increases.

+Q
q

If the total work done in bringing a positive test charge q from innity to a 

point in an electric eld is W, then the electric potential at that point, V, is 

dened to be

V = W_
q

The units for potential are the same as the units for potential difference:  

J C 1 or volts. 

V =
Q_

4πε
o
r

This equation only applies to  

a single point charge.

p
o

te
n

ti
a

l V

distance

Q

4πεor
V =

Potential inside a cHarged sPHere 
Charge will distribute itself uniformly on the outside of a conducting sphere.

• Outside the sphere, the eld lines and equipotential surfaces are the same 

as if all the charge was concentrated at a point at the centre of the sphere.

• Inside the sphere, there is no net contribution from the charges outside 

the sphere and the electric eld is zero. The potential gradient is thus also 

zero meaning that every point inside the sphere is at the same potential – 

the potential at the sphere’s surface.

The graphs below show how eld and potential vary for a sphere of radius a

(a) /V m 1


max

point
charge

slope falls
o as r 2

r/ma


max

= 




Q

a
2

1
4πε

0

(b) V/ V

V
max

point
charge

slope falls
o as r 1

r/ma

V
max

= 




Q

a

1
4πε

0

Potential due to more tHan  

one cHarge
If several charges all contribute to the total 

potential at a point, it can be calculated by 

adding up the individual potentials due to the 

individual charges.

r1
r2

r3

Q1
Q2

Q3

P

potential at point P 

= (potential due to Q1)

   + (potential due to Q2) 

   + (potential due to Q3)

The electric potential at any point outside a 

charged conducting sphere is exactly the same 

as if all the charge had been concentrated at  

its centre.

Potential and field strengtH

potential dierence 

= (VB VA)

distance d

+Q
B Aq q

potential = VB

potential = VA

FAFB

Bringing a positive charge from A to B 

means work needs to be done against 

the electrostatic force.

direction of force
applied by external
agent on test charge
q at A and B

AB

direction of
 at A and Bpoint charge

Q (positive)

The work done δW = -Eqδx [the negative sign 

is because the direction of the force needed to 

do the work is opposite to the direction of E]

Therefore E = - 1
q

δ W_
δ x

= - δ V_
δ x

[since δ V = δ W_
q ]

In words,

electric eld = - potential gradient

Units =
volt_

metre
 (V m 1), N C 1
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uniform fields
Field strength is equal to minus the potential gradient.  

A constant eld thus means:

• A constant potential gradient i.e. a given increase in distance 

will equate to a xed change in potential.  

• In 3D this means that equipotential surfaces will be at 

planes that are equally spaced apart. In 2D equipotential 

lines will be equally spaced. 

• Field lines (perpendicular to equipotential surfaces) will be 

equally spaced parallel lines.

1. Constant gravitational eld

The gravitational eld near the surface of a planet is effectively 

constant. At the surface of the Earth, the eld lines will be 

perpendicular to the Earth’s surface. Since g = 9.81 m s 2, the 

potential gradient must also be 9.81 J kg 1 m 1. Equipotential 

surfaces that are 1,000 m apart represent changes of potential 

approximately equal to 10 kJ kg 1

2. Constant electrical eld

The electric eld in between charged parallel plates  

(e.g. a capacitor – see page 52) is effectively constant  

in the middle section.  

In the diagram below, the potential difference across the 

plates is V and the separation of the plates is d.  Thus the 

electric potential gradient is V

d
 and the constant eld in the 

centre of the plates, E =
V

d
. The units V m 1 and N C 1 are 

equivalent and can both be used for E

Strictly, the electric eld between two charged parallel 

plates cannot remain uniform throughout the plates and 

there will be an edge effect. It is straightforward to show 

that at the edge, the eld must have dropped to half the 

value in the centre, but modelling the eld as constant 

everywhere between the parallel plates with the edge effects 

occurring beyond the limits of the plates can be acceptable.

60 V
+V = 70 V

50 V
40 V
30 V
20 V
10 V
0 V

zero potential often
taken to be negative
terminal of battery

d

Equipotentials lines between charged parallel plates.

PE using PE =mgh

zero at surface

height= 3 km

PE from 1st principles

zero at innity

30 000 J

20 000 J

10 000 J

0 J

6.255 × 10 J

6.25 × 10 J

6.253 × 10 J

6.2603 × 10 J

height= 2 km

height= 1 km

surface of Earth

PE ierencePE= 10 000 J

comParison betWeen electric & gravitational field

Electrostatics Gravitational

Force can be attractive or repulsive

Coulomb’s law – for point charges

F
E
=

q
1
q

2_
4πε

o
r2

= k
q

1
q

2_
r2

Force always attractive

Newton’s law – for point masses

F = G 
m

1
m

2_
r2

Electric eld

E = k F
q

2

q
1

r2

q
1

4πεor2

electric field

test charge

= =

charge producing field

Gravitational eld

g =
F

m2

Gm
1

r2
=

gravitational field

test mass

mass producing field

Electric potential due to a point charge

V
e
=

q
1_

4πε
o
r

= k 
q

1

r

Gravitational potential due to a point mass, m
1

V
g
= -

Gm
1_

r

Electric potential gradient

E = -
∆V

e_
∆r

Gravitational potential gradient

g = -

∆V
g_

∆r

Electric potential energy

E
p
= qV

e
=

q
1
q

2_
4πε

o
r

= k
q

1
q

2_
r

Gravitational potential energy

E
p
= mV

g
= -

GMm_
r
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1. Which one of the following graphs best represents the 

variation of the kinetic energy, KE, and of the gravitational 

potential energy, GPE, of an orbiting satellite at a distance r

from the centre of the Earth?

KE

GPE

en
er
g
yA.

r
0

KE

GPE

en
er
g
yB.

r
0

en
er
g
yC.

r
0

KE

GPE
KE

GPE
en

er
g
yD.

r
0

2. The diagram below illustrates some equipotential lines 

between two charged parallel metal plates.

80 V

+ + + +

- - - -

60 V

40 V

20 V

0.1 m

The electric eld strength between the plates is

A. 6 NC 1 C. 600 NC 1

B. 8 NC 1 D. 800 NC 1

3. The diagram shows equipotential lines due to two objects

object 1object 2

The two objects could be

A. electric charges of the same sign only.

B. masses only.

C. electric charges of opposite sign only.

D. masses or electric charges of any sign. [1]

4. The Space Shuttle orbits about 300 km above the surface of 

the Earth. The shape of the orbit is circular, and the mass of 

the Space Shuttle is 6.8 × 104 kg. The mass of the Earth is  

6.0 × 1024 kg, and radius of the Earth is 6.4 × 106 m.

a) (i) Calculate the change in the Space Shuttle’s 

gravitational potential energy between its  

launch and its arrival in orbit. [3]

(ii) Calculate the speed of the Space Shuttle  

whilst in orbit. [2]

(iii) Calculate the energy needed to put the  

Space Shuttle into orbit. [2]

b) (i) What forces, if any, act on the astronauts  

inside the Space Shuttle whilst in orbit? [1]

(ii) Explain why astronauts aboard the Space  

Shuttle feel weightless. [2]

c) Imagine an astronaut 2 m outside the exterior walls of the 

Space Shuttle, and 10 m from the centre of mass of the 

Space Shuttle. By making appropriate assumptions and 

approximations, calculate how long it would take for this 

astronaut to be pulled back to the Space Shuttle by the 

force of gravity alone. [7]

5. a) The diagram below shows a planet of mass M and radius R
p

X
RM

Rp

The gravitational potential V due to the planet at point X 

distance R from the centre of the planet is given by

V = -
GM_
R

where G is the universal gravitational constant.

Show that the gravitational potential V can be expressed as

V = -

g
0
R

p

2

_
R

where g
0
 is the acceleration of free-fall at the  

surface of the planet. [3]

b) The graph below shows how the gravitational potential V

due to the planet varies with distance R from the centre  

of the planet for values of R greater than R
p
, where  

R
p
= 2.5 × 106 m.

0
5 10 15

1

2

3

4

5
6

7

8
9

10

R/106 m

V
/1

0
6

J 
kg

1

Use the data from the graph to

(i) determine a value of g
0
. [2]

(ii) show that the minimum energy required to  

raise a satellite of mass 3000 kg to a height  

3.0 × 106 m above the surface of the planet  

is about 1.7 × 1010 J. [3]

ib q – Hl
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inducEd Emf
When a conductor moves through a magnetic eld, an emf is 

induced. The emf induced depends on:

• The speed of the wire.

• The strength of the magnetic eld.

• The length of the wire in the magnetic eld.

We can calculate the magnitude of the induced emf  

by considering an electron at equilibrium in the middle  

of the wire. The induced electric force and the magnetic force 

are balanced.

B

B

B

B

electric eld down wire 

due to charge separation



negative end

length l

positive end

v

charge q

Fm

Fe

potential 
dierence V

Electrical force due to emf, F
e
= E × q = ( V

l ) × q

Magnetic force due to movement, F
m

= Bqv

So Bqv = ( V

l ) q

V = B l v

As no current is owing, the emf ε = potential difference

ε = Blv

If the wire was part of a complete circuit (outside the magnetic 

eld), the emf induced would cause a current to ow.

external agent
exerts force F

l

velocity v

induced
current I

coilemf

boundary
of B

a

b

d

c

B ××××

××××

××××

××××

××××

××××

××××

ε

If this situation was repeated with a rectangular coil with N

turns, each section ab would generate an emf equal to Bvl. 

The total emf generated will thus be

ε = Bv lN

Note that in the situation above, a current only ows when 

one side of the coil (ab) is moving through the magnetic eld 

and the other side (cd) is outside the eld. If the whole coil 

was inside the magnetic eld, each side would generate an 

emf. The two emfs would oppose one another and no current 

would ow.

ExamplE
An aeroplane ies at 200 m s 1. Estimate the maximum pd 

that can be generated across its wings.

Vertical component  

of Earth’s magnetic eld = 10 5 T (approximately)

Length across wings = 30 m (estimated)

emf = 10 5 × 30 × 200

= 6 × 10 2 V

= 0.06 V

production of inducEd Emf by rElativE

motion
An emf is induced in a conductor whenever lines of magnetic 

ux are cut. But ux is more than just a way of picturing the 

situation; it has a mathematical denition.

If the magnetic eld is perpendicular to the surface, the 

magnetic ux ∆ϕ passing through the area ∆A is dened in 

terms of the magnetic eld strength B as follows.

∆ϕ = B ∆A, so B =
∆ϕ_
∆A

In a uniform eld, B = 
ϕ

A

An alternative name for ‘magnetic eld strength’ is ‘ux density’.

If the area is not perpendicular, but at an angle θ to the eld 

lines, the equation becomes

ϕ = B A cos θ (units: T m2)

θ is the angle between B and the normal to the surface.

Flux can also be measured in webers (Wb), dened as follows.

1 Wb = 1 T m2

These relationships allow us to calculate the induced emf ε in 

a moving wave is terms of ux.

in a time∆t:

N S

∆x

l

area swept out ∆A= l∆x

ε = B l v since v = ∆x_
∆t

then ε = B l ∆x_
∆t

but l ∆x = ∆A, the area ‘swept out’ by the conductor in a time 

∆t so ε = B ∆A____
∆t

but B ∆A = ∆ϕ so ε =
∆ϕ
___

∆t

In words, ‘the emf induced is equal to the rate of cutting of 

ux’. If the conductor is kept stationary and the magnets are 

moved, the same effect is produced.

ie eee e (e)HL
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lEnz’s law
Lenz’s law states that

‘The direction of the induced emf is such that if an induced current were 

able to ow, it would oppose the change which caused it.’

I
(1)

motion

Current induced in this direction, 
the force would be upwards
(left-hand rule) 
∴ original motion would 

be opposed.

If current were induced this way,
the induced eld would repel 
the magnet opposing motion.

N SNS

motion

(2)

Lenz’s law can be explained in terms of the conservation of energy. The electrical 

energy generated within any system must result from work being done on the 

system. When a conductor is moved through a magnetic eld and an induced 

current ows, an external force is needed to keep the conductor moving (the 

external force balances the opposing force that Lenz’s law predicts). The external 

force does work and this provides the energy for the current to ow.

Put another way, if the direction of an induced current did not oppose the 

change that caused it, then it would be acting to support the change. If this was 

the case, then a force would be generated that further accelerated the moving 

object which would generate an even greater emf – electrical energy would be 

generated without work being done.

application of faraday’s law to moving and rotating coils
There are many situations involving magnetic elds with 

moving or rotating coils. To decide whether or not an emf 

is generated and, if it is, to calculate its value, the following 

procedure can be used:

• Choose the period of time, Δt, over which the motion of the 

coil is to be considered.

• At the beginning of the period, work out the ux passing 

through one turn of the coil, ϕ
initial

. Note that the shape of 

the coil is not relevant just the cross-sectional area.

ϕ = BAcosθ

• At the end of the period, work out the ux passing through 

one turn of the coil ϕ
nal

 using the equation above. Note that 

the sense of the magnetic eld is important. If the magnitude 

of the eld is the same but it is passing through the coil in 

the opposite direction, then

ϕ
nal

= -ϕ
initial

• Determine the change in ux, Δϕ:

Δϕ = ϕ
nal

 - ϕ
initial

• If there is no overall change of ux then, overall, no emf will 

be induced. If there is a change in ux then the emf induced 

in a coil of N turns will be:

ε = -N
∆ϕ_
Δt

Example:

A physicist holds her hand so that the magnetic eld of the 

Earth (50 μT) passes through a ring on her hand.

B = 5 × 10 5 T  

In 0.1 s, she quickly turns her hand through 90° so that the 

magnetic eld of the Earth no longer goes through the ring. 

Estimate the emf generated in the ring.

Answer:

Estimate of cross-sectional area of ring, A ≈ 1 cm2 = 10 4 m2

ϕ
initial

= 5 × 10 5 × 10 4 cos(0) = 5 × 10 9 Wb

ϕ
nal

= 0

∴ ∆ϕ = 5 × 10 9 Wb

magnitude of ε = N
∆ϕ_
Δt

=
5 × 10 9
_

10 1
= 5 × 10 8 V

transformEr-inducEd Emf
An emf is also produced in a wire if the 

magnetic eld changes with time.

If the amount of ux passing through one 

turn of a coil is ϕ, then the total ux linkage

with all N turns of the coil is given by 

Flux linkage = N ϕ

The universal rule that applies to all 

situations involving induced emf can now be 

stated as 

‘The magnitude of an induced emf is 

proportional to the rate of change of ux 

linkage.’

This is known as Faraday’s law ε = N
∆ϕ_
∆t

Faraday’s law and Lenz’s law can be 

combined together in the following 

mathematical statement for the emf, ε, 

generated in a coil of N turns with a rate of 

change of ux through the coil of 
∆ϕ___
Δt

:

ε = -N
∆ϕ_
Δt

The dependence on the rate of change of 

ux and the number of turns is Faraday’s 

law and the negative sign (opposing the 

change) is Lenz’s law.

le'   f' HL
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coil rotating in a magnEtic fiEld – ac 
gEnErator
The structure of a typical ac generator is shown below. 

N S
A

D

B C

coil (only one 
turn shown)eld lines

carbon brush

carbon
brush

output

slip rings (rotate with coil)

ac generator

The coil of wire rotates in the magnetic eld due to an 

external force. As it rotates the ux linkage of the coil changes 

with time and induces an emf (Faraday’s law) causing a 

current to ow. The sides AB and CD of the coil experience 

a force opposing the motion (Lenz’s law). The work done 

rotating the coil generates electrical energy.

A coil rotating at constant speed will produce a sinusoidal 

induced emf. Increasing the speed of rotation will reduce the 

time period of the oscillation and increase the amplitude of the

induced emf (as the rate of change of ux linkage is increased).

in
d

u
ce

d
 e

m
f

coil rotated

at double the 

speed

constant speed of

rotation means induced 

emf is sinusodial

time

transformEr opEration
An alternating potential difference is put into the transformer, 

and an alternating potential difference is given out. The value 

of the output potential difference can be changed (increased 

or decreased) by changing the turns ratio. A step-up

transformer increases the voltage, whereas a step-down

transformer decreases the voltage.

The following sequence of calculations provides the correct 

method for calculating all the relevant values.

• The output voltage is xed by the input voltage and the 

turns ratio.

• The value of the load that you connect xes the output 

current (using V = I R).

• The value of the output power is xed by the values above 

(P = V I).

• The value of the input power is equal to the output power 

for an ideal transformer.

• The value of the input current can now be calculated (using 

P = V I).

So how does the transformer manage to alter the voltages in 

this way?

εp

εs

Np

Ns
=

Is

Ip
=

primary coil

iron core

output ac
voltage εs

input ac
voltage εp

number of turns Np number of turns Ns

Ip Is

Transformer structure

• The alternating pd across the primary creates an ac within the 

coil and hence an alternating magnetic eld in the iron core.

• This alternating magnetic eld links with the secondary 

and induces an emf. The value of the induced emf depends 

on the rate of change of ux linkage, which increases with 

increased number of turns on the secondary. The input and 

output voltages are related by the turns ratio.

rms valuEs
If the output of an ac generator is connected to a resistor an 

alternating current will ow. A sinusoidal potential difference 

means a sinusoidal current.

Po

average
power

power,

P (= V× I )

Po

2
=

time

curve is a sin2 curve (not a sin curve)

The graph shows that the average power dissipation is half the 

peak power dissipation for a sinusoidal current. 

Average power P =
I

0
2R_
2

= ( I
0_

√2 )
2

R

Thus the effective current through the resistor is  

√ (mean value of I2) and it is called the root mean square

current or rms current, I
rms

I
rms 

=
I

0_
√2

 (for sinusoidal currents)

When ac values for voltage or current are quoted, it is the root 

mean square value that is being used. In Europe this value is 

230 V, whereas in the USA it is 120 V. 

V
rms

=
V

0_
√2

P = V
rms 

I
rms

= 1
2

I
0
V

0

P
max

= I
0
V

0

R = V

I
=

V
0_

I
0

=
V

rms_
I

rms

ae e (1)HL
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transmission of ElEctrical powEr
Transformers play a very important role in the safe and 

efcient transmission of electrical power over large distances.

• If large amounts of power are being distributed, then the 

currents used will be high. (Power = V I)

• The wires cannot have zero resistance. This means they 

must dissipate some power

• Power dissipated is P = I
2
R. If the current is large then the 

(current)2 will be very large.

• Over large distances, the power wasted would be very 

signicant.

• The solution is to choose to transmit the power at a very 

high potential difference. 

• Only a small current needs to ow.

• A very high potential difference is much more efcient, but 

very dangerous to the user. 

• Use step-up transformers to increase the voltage for the 

transmission stage and then use step-down transformers 

for the protection of the end user.

diodE bridgEs
The efcient transmission of electrical power is best achieved 

using alternating current (ac) and transformers can ensure 

the appropriate V
rms

 is supplied. Many electrical devices are, 

however, designed to operate using direct current (dc). The 

conversion from ac into dc is called rectication which relies 

on diodes.

A diode is a two-terminal electrical device that has different 

electrical characteristics depending on which way around it is 

connected. An ideal diode allows current to ow in the forward 

direction (negligible resistance with forward bias) but does not 

allow current to ow in the reverse direction (innite resistance 

with reverse bias).

Symbol:

BA

allowed current direction

Current is allowed to ow from A to B (A is positive and B is 

negative) but is prevented from following from B to A (A is 

negative and B is positive).

d
io

d
e

 c
u

rr
e

n
t

diode voltage

V
d

O

ae e (2)HL

lossEs in thE transmission of powEr
In addition to power losses associated with the resistance 

of the power supply lines, which cause the power lines to 

warm up, there are also losses associated with non-ideal 

transformers:

• Resistance of the windings (joule heating) of a 

transformer result in the transformer warming up.

• Eddy currents are unwanted currents induced in the iron 

core. The currents are reduced by laminating the core 

into individually electrically insulated thin strips.

• Hysteresis losses cause the iron core to warm up as a 

result of the continued cycle of changes to its magnetism. 

• Flux losses are caused by magnetic ‘leakage’. A transformer 

is only 100% efcient if all of the magnetic ux that is 

produced by the primary links with the secondary. 

lamination

secondaryprimary
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smoothing circuits
Diode-bridge circuits provide a current that ows in one 

direction (dc) but still pulsates. In order to achieve a steady pd, 

a smoothing device is required. One possibility is a capacitor

(see page 117 for more details).

load
output from

rectifying circuit

++

voltage
across

load

smoothed output

smoothed half-wave rectication

time

smoothed full-wave rectication

unsmoothed output

voltage
across

load

time

Note that:

• The output is still uctuating slightly; this is known as the 

output ripple

• The capacitor is acting as a short-term store of electrical 

energy. 

• The capacitor is constantly charging and discharging. 

• In order to ensure a slow discharge, the value of the 

capacitor C needs to be chosen to ensure that the time 

constant (see page 118) is sufciently large.

re   HL

invEstigating a diodE-bridgE rEctification 

circuit ExpErimEntally
The display of the varying pd across the load is best achieved 

using a cathode ray oscilloscope (CRO).

The y-input control, allows the sensitivity of the CRO to 

appropriately display a changing pd on the y-axis. The time-

base controls allows an appropriate calibration of the x-axis to 

match the time period of the oscillations.

e be

che 2 
p

che 1 
p

ch 2 
evy

ch 1 
evy

time base set at 2.5 mS cm 1

1 oscillation = 8 cm on screen = 20 mS

∴ frequency =
1_

0.02
= 50 Hz

rEctification
1. Half-wave rectication

A single diode will convert ac into a pulsating dc:

load
AC

supply

+
+

voltage

across

load

time

In half-wave rectication, electrical energy that is 

available in the negative cycle of the ac is not utilized.

2. Full-wave rectication

A diode bridge (using four diodes) can utilize all the 

electrical energy that is available during a complete cycle 

as shown below.

load

A

D

C+B
AC

supply

+

voltage

across

load

time

In the positive half of the cycle, current ows through the 

diode bridge from A→C→B→D.

In the negative half of the cycle, current ows through 

the diode bridge from D→C→B→A.

Note that:

• Current always ows through the load resistor in the 

same direction. (C→B)

• Diodes on parallel sides point in the same directions.

• The ac signal is fed to the points where opposite ends 

of twodiodes join.

• The positive output is taken from the junction of the 

negative side of two diodes.

• The negative output is taken from the junction of the 

positive side of two diodes.

• During each half-cycle one set of parallel-side diodes 

conducts.
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ceHL

capacitancE
Capacitors are devices that can store charge. The charge stored q

is proportional to the pd across the capacitor V and the constant 

of proportionality is called the capacitance C

Symbol:

C =
q

V

charge in coulombs

pd in voltscapacitance in farads

C

The farad (F) is a very large unit and practical capacitances are 

measured in µF, nF or pF.

1 F = 1 C V 1

A measurement of the pd across a capacitance allows the charge 

stored to be calculated.

The capacitance of a parallel plate capacitor depends on three 

different factors:

• The area of each plate, A. Each plate is assumed to have the 

same area A and the plates overlap one another completely.

• The separation of the plates, d

• The material between the plates which is called the 

dielectric material. Different materials will have different 

values of a constant called its permittivity, ε. The 

permittivity of air is effectively the same as the permittivity 

of a vacuum (free space), ε
0
= 8.85 × 10 12 C2 N 1 m 2. 

Thepermittivity of all substances is greater than ε
0

The relationship is:

C =
εA_
d

when a dielectric material is introduced, change separation 

across the dielectric is induced. This increases the capacitance.

capacitors in sEriEs and parallEl
The effective total capacitance, C

total
, of the combination of 

capacitors (C
1
, C

2
, C

3
, etc.) in a circuit depends on whether 

the capacitors are joined together in series or in parallel. The 

capacitor equation can be used on individual capacitors or on 

the combination. 

C
total

=
q

total_
V

total

  and C
1
=

q
1_

V
1

 , C
2
=

q
2_

V
2

 , etc.

1. In series

C
1

+q q+

C
2

V
total

+q q+

C
3

V
1

V
2

V
3

+q q+

The charge stored in each capacitor is the same, q and the 

pds across the individual capacitors add together to give 

the total pd

q
total

= q
1
= q

2
= q

3
= q

V
total

= V
1
+ V

2
+ V

3

∴ 
q

total_
C

total

=
q

1_
C

1

+
q

2_
C

2

+
q

3_
C

3

∴ 
q_

C
series

=
q_
C

1

+
q_
C

2

+
q_
C

3

1_
C

series

=
1_
C

1

+
1_
C

2

+ ⋯

e.g. if three capacitors 5 μF, 10 μF and 20 μF are added in 

series, the combined capacitance is:

1_
C

series

=
1
5

+
1_
10

+
1_

20
=

7_
20

μF 1

∴ C
series

=
20_
7

= 2.86 μF

2. In parallel

C1

pd  V1

+q1 q1

C2

pd  V2

pd  V3

+q2 q2

C3

pd  Vtotal

+q3 q3

The pd across each capacitor is the same, V and the charges 

stored in each of the individual capacitors add together to 

give the total charge stored.

V
total

= V
1
= V

2
= V

3
= V

q
total

= q
1
+ q

2
+ q

3

∴ C
total

V
total

= C
1
V

1
+ C

2
V

2
+ C

3
V

3

∴ C
parallel

V = C
1
V + C

2
V + C

3
V

∴ C
parallel

= C
1
+ C

2
+ ⋯

e.g. if three capacitors 5 μF, 10 μF and 20 μF are added in 

parallel, the combined capacitance is:

C
parallel

= 5 + 10 + 20 = 35 μF
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capacitor (rc) dischargE circuits
If the two ends of a charged capacitor are joined together with a 

resistor, a current will ow until the capacitor is discharged.  

initial

pd  V0

+q0 q0

switch S

R

when S is closed,

the current I will ow

in direction shown

During the discharge process:

• the value of the discharge current, I, drops from an initial 

maximum I
0
 down to zero

• the value of the stored charge, q, drops from an initial 

maximum q
0
 down to zero

• the value of the pd across the capacitor (which is also the 

pd across the resistor), V, drops from an initial maximum V
0

down to zero.

Applying Kirchoff’s law around the loop gives

0 = IR +
q

C
Since I is the rate of ow of charge, 

dq_
dt

0 = R 
dq___
dt

+
q

C

dq_
dt

= -
q_

RC

This has the rate of ow of charge proportional to the charge 

stored. The solution is an exponential decrease of charge stored 

given by:

q = q
0

e
-

t_
RC

charge 

remaining 

original 
charge

capacitance (F)

resistance (Ω)

time (s)

The product of RC is called the time constant for the circuit 

and is given the symbol τ (the Greek letter tau).

τ = RC

The SI unit for τ will be seconds (NB: care needed with SI 

multipliers).  

∴ q = q
0

e-
t
τ

Since the current I and the pd V are both proportional to the 

charge, the following equations also apply:

I = I
0

e-
t
τ

V = V
0

e-
t
τ

Where 

I
0
=

q
0_

RC
=

V
0_

R

Example

A 10 μF capacitor is discharged through a 20 kΩ resistor. 

Calculate (a) the time constant τ for the circuit and (b) the 

fraction of charge remaining after one time constant

a) τ = RC = 10 μF × 20 kΩ = 200 ms

b) After one time constant,

q = q
0
e 1 = 0.37q

0

t/ms

q/µC

q = V0C

q0
e

exponential
decay

O RC

time charge

0 100%

1RC 37%

2RC 14%

3RC 5%

4RC 2%

5RC <1%

After 5 time constents, the capacitor is effectively discharged

c eHL
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capacitor charging circuits
If the two ends of an uncharged capacitor are joined together with a resistor, a current will ow until the capacitor  

is charged. 

C

switch S

emf ε

R

when S is closed, the current

I will ow in direction shown

until capacitor is charged

During the charging process:,

• the value of the charging current, I, drops from an initial maximum I
0
 down to zero

• the value of the stored charge, q, increases from zero up to a nal maximum value, q
0

• the value of the pd across the capacitor, V, increases from zero up to a nal maximum value, ε

• the value of the pd across the resistor drops from an initial maximum ε down to zero.

t/ms

q/C

1

q0

q0e
exponential
growth

nal charge = ε0c

O RC

1 (            )
I0

I0

e
exponential
decay

initial current =

O RC

I/mA

t/ms

ε

R

The equation for the increase of charge on the capacitor (which does not need to be memorized) is:

q = q
0
(1 e- t

τ )

EnErgy storEd in a chargEd capacitor
A charged capacitor can provide a temporary store of electrical 

energy when there is a potential difference V across the 

capacitor. The charge, q, that is stored is distributed with +q on 

one plate and q on the other plate as shown below. There is 

an electric eld between the plates.

pd   V

+q q

In the charging process, as more charge is added to the 

capacitor, the pd across it also increases proportionally. 

Thegraph (right) shows how the pd across the capacitor 

varies with charge stored in the capacitor during the charging 

process.Thetotal energy stored, E, is represented by the area 

under thegraph.

Q/C

V/V

1

q0

V0 (nal potential)

V0 (average potential)2

O

1
q0V02

V0

V0

2

area =

E = 1
2

qV = 1
2

q2

C
= 1

2
CV2

Note that both charging and discharging are exponential 

processes. If a circuit is arranged in which a capacitor spends 

equal time charging and discharging through the same value 

resistor, then in one complete cycle, more charge will be added 

to the capacitor during the charging time than it loses during 

the discharging time. The result over several cycles will be for 

the capacitor to charge up to the same pd as the power supply.

c eHL
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ib Qe – eee 
1. The primary of an ideal transformer has 1000 turns and the 

secondary 100 turns. The current in the primary is 2 A and 

the input power is 12 W.

Which one of the following about the secondary current 

and the secondary power output is true?

secondary current secondary power output

A. 20 A 1.2 W

B. 0.2 A 12 W

C. 0.2 A 120 W

D. 20 A 12 W

2. This question is about electromagnetic induction.

A small coil is placed with its plane parallel to a long straight 

current-carrying wire, as shown below.

small coilcurrent-carrying 

wire

a) (i) State Faraday’s law of electromagnetic  

induction. [2]

(ii) Use the law to explain why, when the current  

in the wire changes, an emf is induced in  

the coil. [1]

3. The diagram shows a simple generator with the coil rotating 

between magnetic poles. Electrical contact is maintained 

through two brushes, each touching a slip ring.

N S

At the instant when the rotating coil is oriented as shown, the 

voltage across the brushes

A. is zero.

B. has its maximum value.

C. has the same constant value as in all other orientations.

D. reverses direction.

4. The rms current rating of an electric heater is 4A. What 

 direct current would produce the same power dissipation  

in the electric heater? [2]

A.
4_
√2

A B. 4A

C. 4√2A D. 8A

5. Two loops of wire are next to  

each other as shown here.  

There is a source of alternating  

emf connected to loop 1 and  

an ammeter in loop 2.

The variation with time of the  

current in loop 1 is shown as  

line 1 in each of the graphs below. In which graph does line 2 

best represent the current in loop 2?

I

B

1

1

2

I

D
2

t

t

I

A

1

1I

C
2

t

t

2 (no current)

6. A loop of wire of negligible resistance is rotated in a magnetic 

eld. A 4 Ω resistor is connected across its ends.  

A cathode ray oscilloscope measures the varying induced 

potential difference across the resistor as shown below.

2

–2

1

–1

1.5

–1.5

0.5

–0.5

0

p
o

te
n

ti
a

l d
i

e
re

n
ce

 /
 V

0.05 0.15 0.25 0.35 time / s

a) If the coil is rotated at twice the speed, show on the axes 

above how potential difference would vary with time. [2]

b) What is the rms value of the induced potential 

difference,V
rms

, at the original speed of rotation? [1]

c) Draw a graph showing how the power dissipated in the 

resistor varies with time, at the original speed of rotation. [3]

7. a) A 3μF capacitor is charged to 240 V. Calculate the 

chargestored. [1]

b) Estimate the amount of time it would take for the charge 

you have calculated in (a) to ow through a 60 W light 

bulb connected to the 240 V mains electricity. [2]

c) The charged capacitor in (a) is discharged through a  

60 W 240 V light bulb.

(i) Explain why the current during its discharge will 

notbe constant. [2]

(ii) Estimate the time taken for the capacitor to 

dischargethrough the light bulb. [2]

(iii) Will the bulb light during discharge?  

Explain your answer. [2]

A

1 2

~

HL
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Photoelectric effect 

Under certain conditions, when light (ultra-violet) is shone onto a metal surface 

(such as zinc), electrons are emitted from the surface.

More detailed experiments (see below) showed that:

• Below a certain threshold frequency f
0
, no photoelectrons are emitted, no 

matter how long one waits.

• Above the threshold frequency, the maximum kinetic energy of these  

electrons depends on the frequency of the incident light.

• The number of electrons emitted depends on the intensity of the light and does 

not depend on the frequency.

• There is no noticeable delay between the arrival of the light and the emission of 

electrons.

These observations cannot be reconciled with the view that light is a wave. A wave of 

any frequency should eventually bring enough energy to the metal plate.

StoPPing Potential exPeriment

G

V

vacuum UV window to
transmit UV 
(quartz)

variable power supply
(accelerating pd)

micro-
ammeter

In the apparatus above, photoelectrons 

are emitted by the cathode. They are 

then accelerated across to the anode by 

the potential difference.

The potential between cathode and 

anode can also be reversed. 

In this situation, the electrons are 

decelerated. At a certain value of 

potential, the stopping potential, V , 

no more photocurrent is observed. The 

photoelectrons have been brought to rest 

before arriving at the anode.

photocurrent

potentialVs

high-intensity UV

low-intensity UV 
of same frequency

The stopping potential depends on the 

frequency of UV light in the linear way 

shown in the graph below.

threshold frequency, f0 frequencyst
op

pi
ng

po
te

nt
ia

l V
s

The stopping potential is a measure of 

the maximum kinetic energy of the 

electrons. 

Max KE of electrons = V e

[since pd =
energy_
charge

and e = charge on an electron]

∴ 1
2
mv2 = V e ∴ v = √2V e

_
m

examPle

What is the maximum velocity of electrons  

emitted from a zinc surface (ϕ = 4.2 eV) when  

illuminated by EM radiation of wavelength 200 nm?

ϕ = 4.2 eV = 4.2 × 1.6 × 10 19 J = 6.72 × 10 19 J

Energy of photon = h
c

λ
= 6.63 × 10 34 × 3 × 108
___

2 × 10 7

= 9.945 × 10 19 J

∴ KE of electron = (9.945  6.72) × 10 19 J

= 3.225 × 10 19 J

∴ v = √
_____
2 KE_
m

= √
______________
2 × 3.225 × 10 19
__

9.1 × 10 31

= 8.4 × 105 m s 1

einStein model

Einstein introduced the idea of 

thinking of light as being made up of 

particles.

His explanation was:

• Electrons at the surface need a 

certain minimum energy in order 

to escape from the surface. This 

minimum energy is called the work 

function of the metal and given 

the symbol ϕ

• The UV light energy arrives in lots 

of little packets of energy – the 

packets are called photons.

• The energy in each packet is xed 

by the frequency of UV light that is 

being used, whereas the number of 

packets arriving per second is xed 

by the intensity of the source.

• The energy carried by a photon is 

given by

energy in joules

frequency of 

light in Hz

Planck’s constant  

6.63 × 10 34 J s

E =

• Different electrons absorb different 

photons. If the energy of the 

photon is large enough, it gives the 

electron enough energy to leave the 

surface of the metal.

• Any ‘extra’ energy would be 

retained by the electron as kinetic 

energy.

• If the energy of the photon is too 

small, the electron will still gain this 

amount of energy but it will soon 

share it with other electrons.

Above the threshold frequency, 

incoming energy of photons = energy 

needed to leave the surface + kinetic 

energy.

In symbols,

E
max

= hf ϕ

hf = ϕ + E
max

or hf = ϕ + V e

This means that a graph of frequency 

against stopping potential should be a 

straight line of gradient e
h

P HL
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Wave–Particle duality
The photoelectric effect of light waves clearly demonstrates that 

light can behave like particles, but its wave nature can also be 

demonstrated – it reects, refracts, diffracts and interferes just 

like all waves. So what exactly is it? It seems reasonable to ask 

two questions.

1. Is light a wave or is it a particle?

The correct answer to this question is ’yes‘! At the most 

fundamental and even philosophical level, light is just light. 

Physics tries to understand and explain what it is. We do this by 

imagining models of its behaviour. Sometimes it helps to think 

of it as a wave and sometimes it helps to think of it as a particle, 

but neither model is complete. Light is just light. This dual 

nature of light is called wave–particle duality

2. If light waves can show particle properties, can particles such as 

electrons show wave properties?

Again the correct answer is ‘yes’. Most people imagine moving 

electrons as little particles having a denite size, shape, position 

and speed. This model does not explain why electrons can be 

diffracted through small gaps. In order to diffract they must 

have a wave nature. Once again they have a dual nature. See 

the experiment below.

de Broglie hyPotheSiS
If matter can have wave properties and waves can have matter 

properties, there should be a link between the two models. The 

de Broglie hypothesis is that all moving particles have a ‘matter 

wave’ associated with them. This matter wave can be thought of 

as a probability function associated with the moving particle. The 

(amplitude)2 of the wave at any given point is a measure of the 

probability of nding the particle at that point. The wavelength of 

this matter wave is given by the de Broglie equation:

λ =
hc_
pc =

hc_
E

for photons

λ is the wavelength in m

h is Plank’s constant = 6.63 × 10 34 J s

c is the speed of light = 3.0 × 108 m s 1

p is the momentum of the particle

The higher the energy, the lower the de Broglie wavelength. This 

equation was introduced on page 69 as the method of calculating 

a photon’s wavelength from its energy, E. In order for the wave 

nature of particles to be observable in experiments, the particles 

often have very high velocities. In these situations the proper 

calculations are relativistic but simplications are possible.

1. At very high energies: pc = E

In these situations, the rest energy of the particles can be 

negligible compared with their energy of motion. 

For example, the rest energy of an electron (0.511 MeV) is 

negligible if it has been accelerated through an effective potential 

difference of 420 MV to have kinetic energy of 420 MeV. In 

these circumstances the total energy of an electron is effectively 

420 MeV. The de Broglie wavelength of 420 MeV electrons is:

λ =
6.6 × 10 34

× 3.0 × 108
___
420 × 106 

× 1.6 ×10 19
= 2.9 × 10 15 m

2. At low energies

In these situations the relationship can be restated in terms of 

the momentum p of the particle measured in kg m s 1 (in non-

relativistic mechanics, P = mass × velocity): 

λ =
h
p

For example, electrons accelerated through 1 kV would gain a KE 

of 1.6 × 10 16 J. Since KE and non-relativistic momentum are 

related by E
K

=
p2

2m
 , this gives p = 1.7 × 10 23 kg m s 1

λ =
6.6 × 10 34
__
1.7 × 10 23

= 3.9 × 10 11 m

electron diffraction exPeriment
In order to show diffraction, an electron ‘wave’ must travel 

through a gap of the same order as its wavelength. The atomic 

spacing in crystal atoms provides such gaps. If a beam of 

electrons impinges upon powdered carbon then the electrons 

will be diffracted according to the wavelength.

screen

heater

accelerating p.d.

~1000 V

powdered

graphite
vacuum

+

~

The circles correspond to the angles where constructive 

interference takes place. They are circles because the powdered 

carbon provides every possible orientation of gap. A higher 

accelerating potential for the electrons would result in a higher 

momentum for each electron. According to the de Broglie 

relationship, the wavelength of the electrons would thus decrease. 

This would mean that the size of the gaps is now proportionally 

bigger than the wavelength so there would be less diffraction. The 

circles would move in to smaller angles. The predicted angles of 

constructive interference are accurately veried experimentally.

daviSSon and germer exPeriment (1927)
The diagram below shows the principle behind the Davisson 

and Germer electron diffraction experiment.

A beam of electrons strikes a target nickel crystal. The electrons 

are scattered from the surface. The intensity of these scattered 

electrons depends on the speed of the electrons (as determined 

by their accelerating potential difference) and the angle.

A maximum scattered intensity was recorded at an angle 

that quantitatively agrees with the constructive interference 

condition from adjacent atoms on the surface.

lament

movable

electron

detector

scattered electrons
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introduction
As we have already seen, atomic spectra (emission and 

absorption) provide evidence for the quantization of the 

electron energy levels. See page 69 for the laboratory set-up. 

Different atomic models have attempted to explain these energy 

levels. The rst quantum model of matter was the Bohr model 

for hydrogen: modern models describe the electrons by using 

wavefunctions (see page 125).

hydrogen SPectrum
The emission spectrum of atomic hydrogen consists of particular 

wavelengths. In 1885 a Swiss schoolteacher called Johann Jakob

Balmer found that the visible wavelengths tted a mathematical 

formula. 

These wavelengths, known as the Balmer series, were later 

shown to be just one of several similar series of possible 

wavelengths that all had similar formulae. These can be 

expressed in one overall formula called the Rydberg formula

1

λ
= R

H( 1_
n2

1_
m2)

λ – the wavelength

m – a whole number larger than 2 i.e. 3, 4, 5 etc

For the Lyman series of lines (in the ultra-violet range) n = 1. 

For the Balmer series n = 2. The other series are the Paschen

(n = 3), Brackett (n = 4), and the Pfund (n = 5) series. In 

each case the constant R
H
, called the Rydberg constant, has 

the one unique value, 1.097 × 107 m 1. 

Pair Production and Pair annihilation
Matter and radiation interactions are not restricted to the 

absorption or emission of radiation by matter (such as takes 

place in absorption or emission spectra, above). As introduced on 

page 73, for every ‘normal’ matter particle that exists, there will 

be a corresponding antimatter particle which has the same mass 

but every other property is opposite. For example:

• The antiparticle of an electron, e  (or β ) is a positron,  

e+ (or β+)

• The antiparticle for a proton, p+ is the antiproton, p

• The antiparticle for a neutrino, ν is an antineutrino, ν

When a particle and its corresponding antiparticle meet 

they annihilate one another and the mass is converted into 

radiation. As seen on page 78, these annihilations must obey 

certain conservations and in particular the conservation of 

energy, momentum and charge.

When an electron e  and a positron e+ annihilate typically 

they create two photons. Each photon has a momentum and 

if combined momentum of the electron–positron pair was 

initially zero, then the two photons will be travelling in opposite 

directions. The reverse process is also possible – photons of 

sufcient energy can convert into a pair of particles (one matter 

and one antimatter). Much of the energy goes into the rest 

masses of the particles with any excess going into the kinetic 

energy of the particles that have been created. Typically for pair 

production to take place, the photon needs to interact with a 

nucleus. The nucleus is not changed in the interaction but is 

involved in the overall conservation of momentum and energy 

that must take place. Without its ability to ‘absorb’ some of the 

momentum, the interaction could not occur. 

examPle
The diagram below represents some of the electron energy levels in the hydrogen atom. Calculate the wavelength of the photon 

emitted when an electron falls from n = 3 to n = 2.

0

0.9

1.5

3.4

13.6

energy level / eV

n= 3

n= 2

‘allowed’ energy

levels

ground state: n= 1

Energy difference in levels = 3.4  1.5 = 1.9 eV = 1.9 × 1.6 × 10 19 J = 3.04 × 10 19 J

Frequency of photon f =
E

h
=

3.04 × 10 19
__
6.63 × 10 34

= 4.59 × 1014 Hz

Wavelength of photon λ =
c

f
=

3.00 × 108
__
4.59 × 1014

= 6.54 × 10 7 m = 654 nm

This is in the visible part of the electromagnetic spectrum and one wavelength in the Balmer series.



124 Q u a n t u m  a n d  n u c l e a r  p h y s i c s

B    HL

Bohr model

Niels Bohr took the standard ‘planetary’ model of the hydrogen 

atom and lled in the mathematical details. Unlike planetary 

orbits, there are only a limited number of ‘allowed’ orbits 

for the electron. Bohr suggested that these orbits had xed 

multiples of angular momentum. The orbits were quantized 

in terms of angular momentum. The energy levels predicted 

by this quantization were in exact agreement with the 

discrete wavelengths of the hydrogen spectrum. Although this 

agreement with experiment is impressive, the model has some 

problems associated with it.

Bohr postulated that:

• An electron does not radiate energy when in a stable orbit. 

The only stable orbits possible for the electron are ones 

where the angular momentum of the orbit is an integral 

multiple of h
2π

 where h is a xed number (6.6 × 10 34 J s) 

called Planck’s constant. Mathematically

m
e
vr =

nh_
2π

[angular momentum is equal to m
e
vr]

• When electrons move between stable orbits they radiate (or 

absorb) energy.

F
electrostatic

= centripetal force

∴
e2
_
4πε

0
r2

=
m

e
v2

_
r

but v =
nh_

2πm
e
r
 [from 1st postulate]

∴ r =
ε

0
n2h2

_
πm

e
e2

 (by substitution)

Total energy of electron = KE + PE

where KE =
1
2

m
e
v2

=
1
2

e2
_
(4πε

0
r)

and PE = -
e2
_
4πε

0
r
 [electrostatic PE]

so total energy E
n
= -

1
2

e2
_
4πε

0
r

= -
m

e
e4

_
8ε0

2n2h2

This nal equation shows that:

• the electron is bound to (= ’trapped by’) the proton because 

overall it has negative energy. 

• the energy of an orbit is proportional to –
1

n2
. In electronvolts

E
n
= –

13.6_
n2

The second postulate can be used (with the full equation) to 

predict the wavelength of radiation emitted when an electron 

makes a transition between stable orbits.

hf = E
2

E
1

=
m

e
e4

_
8ε

0

2h2 ( 1_
n

1

2

1_
n

2

2)
but f =

c

λ

∴ 
1

λ
=

m
e
e4

_
8ε

0

2ch3 ( 1_
n

1

2

1_
n

2

2)
It should be noted that:

• this equation is of the same form as the Rydberg formula.

• the values predicted by this equation are in very good 

agreement with experimental measurement.

• the Rydberg constant can be calculated from other (known) 

constants. Again the agreement with experimental data is good.

The limitations to this model are:

• if the same approach is used to predict the emission spectra 

of other elements, it fails to predict the correct values for 

atoms or ions with more than one electron.

• the rst postulate (about angular momentum) has no 

theoretical justication.

• theory predicts that electrons should, in fact, not be stable 

in circular orbits around a nucleus. Any accelerated electron 

should radiate energy. An electron in a circular orbit is 

accelerating so it should radiate energy and thus spiral in to 

the nucleus.

• it is unable to account for relative intensity of the different lines.

• it is unable to account for the ne structure of the spectral lines.

nuclear radii and nuclear denSitieS

Not surprisingly, more massive nuclei have larger radii. 

Detailed analysis of the data implies that the nuclei have a 

spherical distribution of positive charge with an essentially 

constant density. The results are consistent with a model 

in which the protons and neutrons can be imagined to be 

hard spheres that are bonded tightly together in a sphere 

of constant density. A nucleus that is twice the size of a 

smaller nucleus will have roughly 8 (=23) times the mass.

The nuclear radius R of element with atomic mass number A

can be modelled by the relationship:

R = R
0

A
1
3

Where R
0
 is a constant roughly equal to 10 15 m (or 1 fm).  

R
0
= 1.2 × 10 15 m = 1.2 fm.

e.g. The radius of a uranium-238 nucleus is predicted to be

R = 1.2 × 10 15
× (238)

1
3 m = 7.4 fm 

The volume of a nucleus, V, of radius, R is given by:

V =
4
3

πR3 =
4
3

πAR
0

3

Where the mass number A is equal to the number of nucleons

The number of nucleons per unit volume =
A
V

=
3A_

4πAR
0

3

=
3_

4πR
0

3

The mass of a nucleon is m (≈ 1.7 × 10 27 kg), so the nuclear 

density ρ is:

ρ = 3m_
4πR

0

3
=

3 × 1.7 × 10 27
__
4π(1.2 × 10 15)3

= 2 × 1017 kg m 3

This is a vast density (a teaspoon of matter of this density has 

a mass ≈ 1012 kg). The only macroscopic objects with the same 

density as nuclei are neutron stars (see page 200).
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Schrödinger model
Erwin Schrödinger (1887–1961) built on the concept of matter 

waves and proposed an alternative model of the hydrogen atom 

using wave mechanics. The Copenhagen interpretation is a way 

to give a physical meaning to the mathematics of wave mechanics.

• The description of particles (matter and/or radiation) in 

quantum mechanics is in terms of a wavefunction ψ. This 

wavefunction has no physical meaning but the square of the 

wavefunction does.

• ψ is a complex number

• At any instant of time, the wavefunction has different values 

at different points in space.

• The mathematics of how this wavefunction develops with 

time and interacts with other wavefunctions is like the 

mathematics of a travelling wave.

• The probability of nding the particle (electron or photon, 

etc.) at any point in space within the atom is given by the 

square of the amplitude of the wavefunction at that point.

• The square of the absolute value of ψ,|ψ 2, is a real number 

corresponding to the probability density of nding the 

particle in a given place. 

• When an observation is made the wavefunction is said to 

collapse, and the complete physical particle (electron or 

photon, etc.) will be observed to be at one location.

The standing waves on a string have a xed wavelength 

but for energy reasons the same is not true for the electron 

wavefunctions. As an electron moves away from the nucleus it 

must lose kinetic energy because they have opposite charges. 

Lower kinetic energy means that it would be travelling with 

a lower momentum and the de Broglie relationship predicts a 

longer wavelength. This means that the possible wavefunctions 

that t the boundary conditions have particular shapes.

The wavefunction provides a way of working out the probability 

of nding an electron at that particular radius. |ψ 2 at any given 

point is a measure of the probability of nding the electron at 

that distance away from the nucleus – in any direction.

p(r) = |ψ 2∆V

The wavefunction exists in all three dimensions, which makes 

it hard to visualize. Often the electron orbital is pictured as a 

cloud. The exact position of the electron is not known but we 

know where it is more likely to be.

In Schrödinger’s model there are different wavefunctions depending 

on the total energy of the electron. Only a few particular energies 

result in wavefunctions that t the boundary conditions – electrons 

can only have these particular energies within an atom. An electron 

in the ground state has a total energy of –13.6 eV, but its position 

at any given time is undened in this model. The wavefunction for 

an electron of this energy can be used to calculate the probability of 

nding it at a given distance away from the nucleus. 

• The resulting orbital for the electron can be described in 

terms of the probability of nding the electron at a certain 

distance away. The probability of nding the electron at a 

given distance away is shown in the graph below.
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• The electron in this orbital can be visualized as a ‘cloud’ of 

varying electron density. It is more likely to be in some places 

than other places, but its actual position in space is undened.

1s

Electron cloud for the 1s orbital in hydrogen

There are other xed total energies for the electron that result 

in different possible orbitals. In general as the energy of the 

electron is increased it is more likely to be found at a further 

distance away from the nucleus.
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Probability density functions for some orbitals in the hydrogen 

atom. The scale on the vertical axis is different from graph to graph.

The wavefunction is central to quantum mechanics and, in 

principle, should be applied to all particles.

Example:

A particle is described as the following wavefunction:
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The particle will not be detected at the mid point and the 

probability of detection at A = probability of detection at B.

probability of detecting the electrons in a small volume of 

space, ∆V
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heiSenBerg uncertainty PrinciPle
The Heisenberg uncertainty principle identies a 

fundamental limit to the possible accuracy of any physical 

measurement. This limit arises because of the nature of 

quantum mechanics and not as a result of the ability (or 

otherwise) of any given experimenter. He showed that it was 

impossible to measure exactly the position and the momentum 

of a particle simultaneously. The more precisely the position is 

determined, the less precisely the momentum is known in this 

instant, and vice versa. They are linked variables and are called 

conjugate quantities

There is a mathematical relationship linking these uncertainties.

∆x∆p ≥
h_

4π

∆x The uncertainty in the measurement of position

∆p The uncertainty in the measurement of momentum

Measurements of energy and time are also linked variables.

∆E∆t ≥
h_

4π

∆E The uncertainty in the measurement of energy

∆t The uncertainty in the measurement of time

The implications of this lack of precision are profound. Before 

quantum theory was introduced, the physical world was best 

described by deterministic theories – e.g. Newton’s laws. A 

deterministic theory allows us (in principle) to make absolute 

predictions about the future.

Quantum mechanics is not deterministic. It cannot ever predict 

exactly the results of a single experiment. It only gives us the 

probabilities of the various possible outcomes. The uncertainty 

principle takes this even further. Since we cannot know the 

precise position and momentum of a particle at any given time, 

its future can never be determined precisely. The best we can do 

is to work out a range of possibilities for its future. 

It has been suggested that science would allow us to 

calculate the future so long as we know the present exactly. 

As Heisenberg himself said, it is not the conclusion of this 

suggestion that is wrong but the premise.

eStimateS from the uncertainty PrinciPle
Example calculation: The position of a proton is measured 

with an accuracy of ± 1.0 × 10 11 m. What is the minimum 

uncertainty in the proton’s position 1.0 s later?  

∆x∆p ≥
h_

4π
∴ ∆x × m∆v ≥

h_
4π

∆v ≥
h_

4πm∆x
=

6.63× 10 34
___
4π×1.67×10 27×1.0×10 11

= 3200 m s 1

Thus uncertainty in position after 1.0 s = 3200 m = 3.2 km

The uncertainty principle can also be applied to illuminate some 

general principles but, to quote Richard Feynman (Feynman 

lectures on Physics, volume III, 1963), ‘[the application] must 

not be taken too seriously; the idea is right but the analysis is not very 

accurate’.

1. Estimate of the energy of an electron in an atom.

When an electron is known to be conned within an atom, 

then the uncertainty in its position Δx must be less than 

the size of the atom, a. If we equate the two, this means the 

uncertainty for its momentum can be estimated as: 

∆p ≈
h_

4π∆x
≈

h_
4πa

If we take this uncertainty in the momentum as a value for the 

momentum of the electron (∆p≈p), the equations of classical 

mechanics can estimate the kinetic energy of the electron:

E
K

=
p2

_
2m

≈
h2
_
32π2ma2

The diameter of a hydrogen atom is approximately 10 10 m, 

so the estimation of the kinetic energy is:

E
K

≈
(6.6 × 10 34)2

___
32π2 × 9.3×10 31 × (10 10)2

= 1.5 × 10 19 J 

≈ 1 eV 

This calculation is a very rough estimate but correctly predicts 

the right order of magnitude for the electron’s kinetic energy 

(ground state of electron in H atom is 13.6 eV). 

2. Impossibility of an electron existing within a nucleus of 

anatom.

The above calculation can be repeated imagining an electron 

being trapped inside the nucleus of size 10 14 m. If conned 

to a space this small, the electron’s kinetic energy would be 

estimated to be a factor of 108 times bigger. An electron with 

an energy of the order of 100 MeV cannot be bound to a 

nucleus and thus it would have enough energy to escape.

3. Estimate of lifetime of an electron in an excited energy state.

The spectral linewidth associated with an atom’s emission 

spectrum is usually taken to be very small – only discrete 

wavelengths are observed. As a result of the uncertainty 

principle, the linewidth is, however, not zero. Practically, 

there will be a very limited range of wavelengths associated 

with any given transition and thus the uncertainty associated 

with the energy difference between the two levels involved 

is very small. An estimate of the lifetime of an electron in 

the excited state can be made using the uncertainty principle 

as the uncertainty in energy, ΔE, of a transition is inversely 

proportional to the average lifetime, Δt, in the excited state:

∆E∆t ≈
h_

4π

If ∆E = 5 × 10 7 eV 

∆t ≈
6.6 × 10 34

___
4π × 5 × 10 7 × 1.6 ×10 19

= 6.6 × 10 10 ≈ 1 ns 
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Heisenberg’s uncertainty relationship can be used to explain 

the quantum phenomenon of tunnelling. The situation being 

considered is a particle that is trapped because its energy E

is less than the energy it needs to escape (U
0
). In classical 

physics, if a particle does not have enough energy to escape 

from the potential barrier then it will always remain trapped 

inside the system. An example would be a 500 g tennis ball 

with a total energy of 4 J bouncing up and down between 

two walls that are 1.2 m high. In order to get over one of 

the walls, the tennis ball needs to have a potential energy of 

mgh = 0.5 × 10 × 1.2 = 6 J. Since it only has 4 J it must remain 

trapped by the walls.

In an equivalent microscopic situation (e.g. an electron trapped 

inside an atom with energy E which is less than the energy 

U
0
 needed to escape), the rules of quantum physics mean 

that it is now possible for the particle to escape! The particle’s 

wavefunction is continuous and does not drop immediately 

to zero when it meets the sides of the potential well but the 

amplitude decreases exponentially. This means that if the barrier 

has a nite width then the wavefunction does continue on the 

other side of the barrier (with reduced amplitude). Therefore 

there is a probability that particle will be able to escape despite 

not having enough energy to do so. Escaping the potential well 

does not use up any of the particle’s total energy.

classically forbidden region

U0

Ψexit

Reduced probability, but not 

reduced energy!

Ψincident

E

particle energy

incoming particle
wavefunction

particle wavefunction
past the barrier

An explanation can be offered in terms of the uncertainty 

principle. In order for the particle to escape it would need a 

greater total energy (E + ΔE = U
0
). The particle can ‘disobey’ 

the law of conservation of energy by ‘borrowing’ an amount of 

energy ΔE provided it ‘pays it back’ in a time Δt such that the 

uncertainty principle applies: 

∆E∆t ≈
h_

4π

The longer the barrier, the more time it takes the particle to 

tunnel. Increased tunnelling time will reduce the maximum 

possible uncertainty in the energy.

Example 1 – alpha decay
The protons and neutrons that form alpha particles already exist 

within nuclei and when emitted overall there is a release of 

energy. For example uranium-238 has a half-life of about  

4.5 billion years. It decays by emitting an alpha particle:

92

238U→ 90

234Th + 2

4
α

The energy of the emitted alpha particle is 4.25 MeV which 

is less than the total potential energy needed to escape the 

strong force within the nucleus. If we imagine an alpha particle 

being formed inside the uranium nucleus, it can only escape 

by tunnelling through the potential barrier. In this example, 

the very long half-life must mean that the probability of the 

tunnelling process taking place (given by ψ 2) must be very low.

nuclear
surface

attractive
nuclear
potential

repulsive Coulomb
potential ∝ 1/r

wavefunction of
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Example 2 – tunnelling electron microscope
In a scanning tunnelling microscope, a very ne metal tip 

is scanned close to, but not touching (separated by a few nm), 

a sample metal surface. There is a potential difference between 

the probe and the surface but the electrons in the surface do not 

have enough energy to escape the potential energy barrier as 

represented by the work function ϕ. Quantum tunnelling can, 

however, take place and a tunnelling current will ow as the 

wavefunction of an electron at the surface will extend beyond 

the metal surface. Some electrons will tunnel the gap and 

electrical current will be measurable. The value of the current 

depends on the separation of the tip and the surface and can be 

used to visualize atomic structure.

sample

path of

the probe

surface
of sample

tunnelling

current

scanning tunnelling
microscope (STM)

tip
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the nucleuS – Size

In the example below, alpha particles are allowed to bombard 

gold atoms. 

As they approach the 

gold nucleus, they feel a 

force of repulsion. If an 

alpha particle is heading 

directly for the nucleus, it 

will be reected straight 

back along the same 

path. It will have got as 

close as it can. Note that none of the alpha particles actually 

collides with the nucleus – they do not have enough energy.

Alpha particles are emitted from their source with a known 

energy. As they come in they gain electrostatic potential 

energy and lose kinetic energy (they slow down). At the 

closest approach, the alpha particle is temporarily stationary 

and all its energy is potential.

Since electrostatic energy =
q q

2____
4πε

0
r
, and we know q

1
, the charge 

on an alpha particle and q
2
, the charge on the gold nucleus we 

can calculate r. 

closest approach, r

alpha particles

nucleus

deviationS from rutherford Scattering in 

high energy exPerimentS

Rutherford scattering is modelled in terms of the coulomb 

repulsion between the alpha particle and the target nucleus. 

At relatively low energies, detailed analysis of this model 

accurately predicts the relative intensity of scattered alpha 

particles at given angles of scattering. At high energies, 

however, the scattered intensity departs from predictions.
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departs from the Rutherford

scattering formula at about

27.5 MeV
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Eisberg, R. M. and Porter, C. E., Rev. Mod. Phys. 33, 190 (1961)

At these high energies the alpha particles are beginning to get 

close enough to the target nucleus for the strong nuclear force to

begin to have an effect. In order to investigate the size of the 

nucleus in more detail, high energy electrons can be used (see 

box on the right).

examPle

If the α particles have an energy of 4.2 MeV, the closest 

approach to the gold nucleus (Z = 79) is given by

(2 × 1.6 × 10 19) (79 × 1.6 × 10 19)____
4 × π × 8.85 × 10 12

× r

= 4.2 × 106
× 1.6 × 10 19

∴ r =
2 × 1.6 × 10 19

× 79___
4 × π × 8.85 × 10 12

× 4.2 × 106

= 5.4 × 10 14 m

nuclear Scattering exPeriment involving 

electronS

Electrons, as leptons, do not feel the strong force. High-energy 

electrons have a very small de Broglie wavelength which can be 

of the right order to diffract around small objects such as nuclei.

The diffraction pattern around a circular object of diameter D

has its rst minimum at an angle θ given by:

sin θ ≈
λ

D

[Note that this small angle approximation is usually not 

appropriate to use to determine the location of the minimum 

intensity but this is being used to give an approximate answer 

around a spherical object. A more exact expression that is 

sometimes used for circular objects is sin θ = 1.22 λ

D
]

High energy (400 MeV) electrons are directed at a target 

containing carbon-12 nuclei:

electron beam

thin sample detector 

θ

The results are shown below:

diraction angle (θ)

(logarithmic
scale)

intensity of
diracted
electrons

35

The rst minimum is θ = 35°

The de Broglie wavelength for the electrons is effectively: 

λ =
hc_
E

=
6.6 × 10 34

× 3.0 × 108
___
400 × 106 

× 1.6 × 10 19
= 3.1 × 10 15 m 

D ≈
λ_

sin θ
 =

3.1 × 10 15
__

sin 35
= 5.4 × 10 15 m 

So radius of nucleus ≈ 2.7 × 10 15 m



129Q u a n t u m  a n d  n u c l e a r  p h y s i c s

energy levelS
The energy levels in a nucleus are higher than the energy levels of 

the electrons but the principle is the same. When an alpha particle or 

a gamma photon is emitted from the nucleus only discrete energies 

are observed. These energies correspond to the difference between 

two nuclear energy levels in the same way that the photon energies 

correspond to the difference between two atomic energy levels

Beta particles are observed to have a continuous spectrum of 

energies. In this case there is another particle (the antineutrino in 

the case of beta minus decay) that shares the energy. Once again the 

amount of energy released in the decay is xed by the difference 

between the nuclear energy levels involved. The beta particle and the 

antineutrino can take varying proportions of the energy available. The 

antineutrino, however, is very difcult to observe (see box below).

226
88

Ra

222
Rn*

86

α

(4.59 MeV)
α

(4.78 MeV)

excited state
ground

state

γ photon

(0.19 MeV) 222
Rn

86

n  s   HL

neutrinoS and antineutrinoS
Understanding beta decay properly requires 

accepting the existence of a virtually 

undetectable particle, the neutrino. It is 

needed to account for the ‘missing’ energy 

and (angular) momentum when analysing 

the decay mathematically. Calculations 

involving mass difference mean that we 

know how much energy is available in 

beta decay. For example, an isotope of 

hydrogen, tritium, decays as follows:3

1

3H → 2

3He + 1

0β

The mass difference for the decay is 

19.5 keV c–2. This means that the beta 

particles should have 19.5 keV of kinetic 

energy. In fact, a few beta particles are 

emitted with this energy, but all the others 

have less than this. The average energy 

is about half this value and there is no 

accompanying gamma photon. All beta 

decays seem to follow a similar pattern.

n
u

m
b

er
 o

f 
e

le
ct

ro
n

s

0.5 1

energy / MeV

0

The energy distribution of the electrons 

emitted in the beta decay of bismuth-210. 

The kinetic energy of these electrons is 

between zero and 1.17 MeV.

The neutrino (and antineutrino) must be 

electrically neutral. Its mass would have 

to be very small, or even zero. It carries 

away the excess energy but it is very hard 

to detect. One of the triumphs of the 

particle physics of the last century was  

to be able to design experiments that 

conrmed its existence. The full equation 

for the decay of tritium is:

1

3H → 2

3He + 1

0β + ν

where ν is an antineutrino

As has been mentioned before, another 

form of radioactive decay can also take 

place, namely positron decay. In this 

decay, a proton within the nucleus 

decays into a neutron and the antimatter 

version of an electron, a positron, which 

is emitted.

1

1p → 0

1n + +1

0β+ + ν

In this case, the positron, β+, is 

accompanied by a neutrino. 

The antineutrino is the antimatter form 

of the neutrino.

e.g. 10

19Ne → 9

19F + +1

0β+ + ν

6

14C → 7

14N + 1

0β + ν

mathematicS of exPonential decay
The basic relationship that denes 

exponential decay as a random process is 

expressed as follows:

dN_
dt

∝ –N

The constant of proportionality between 

the rate of decay and the number of nuclei 

available to decay is called the decay 

constant and given the symbol λ. Its units 

are time 1 i.e. s 1 or yr 1 etc.

dN_
dt

= -λN

The solution of this equation is:

N = N
0
e λt

The activity of a source, A, A = -
dN_
dt

A = A
0
e λt = λN

0
e λt

It is useful to take natural logarithms:

ln (N) = ln (N
0
e-λt)

= ln (N
0
) + ln (e-λt)

= ln (N
0
) λt ln (e)

∴  ln (N) = ln (N
0
) λt (since ln (e) = 1)

This is of the form y = c + mx so a graph 

of ln N vs t will give a straight-line graph.

N = N
0
e λt

If t = T 1
2

N =
N

0_
2

So
N

0_
2

= N
0
e

λT

∴
1
2
= e

λT

∴ In ½ = -λT 1
2

∴ -λT 1
2

= - In ½

= ln 2

∴ T 1
2

=
ln 2_
λ

intercept =

ln(N0) gradient=-λ

t

In (N) examPle
The half-life of a radioactive isotope 

is 10 days. Calculate the fraction of a 

sample that remains after 25 days.

T
2

= 10 days

λ =
ln 2_
T

2

= 6.93 × 10 2 day 1

N = N
0
e-λt

Fraction remaining =
N_
N

0

= e (6.93 × 10 × 25)

= 0.187

= 18.7%

The decay of 226Ra into 222Rn
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1. The diagrams show the variation with distance x of the 

wavefunction Ψ of four different electrons. The scale on the 

horizontal axis in all four diagrams is the same. For which 

electron is the uncertainty in the momentum the largest?

a)
Ψ

0 x

c)
Ψ

0 x

b) Ψ

0 x

d) Ψ

0 x

2. The diagram represents the available energy levels of an 

atom. How many emission lines could result from electron 

transitions between these energy levels?

energy

ground

state

A. 3 B. 6 C. 8 D. 12

3. A medical physicist wishes to investigate the decay of a 

radioactive isotope and determine its decay constant and half-

life. A Geiger–Müller counter is used to detect radiation from 

a sample of the isotope, as shown.

radioactive
source

Geiger–Müller
tube

voltage supply
and counter

a) Dene the activity of a radioactive sample. [1]

Theory predicts that the activity A of the isotope in the 

sample should decrease exponentially with time t according 

to the equation A = A
0
e-λt, where A

0
 is the activity at t = 0 

and λ is the decay constant for the isotope.

b) Manipulate this equation into a form which will give a 

straight line if a semi-log graph is plotted with appropriate 

variables on the axes. State what variables should be 

plotted. [2]

The Geiger counter detects a proportion of the particles 

emitted by the source. The physicist records the count-rate R

of particles detected as a function of time t and plots the data 

as a graph of ln R versus t, as shown below.

c) Does the plot show that the experimental data are 

consistent with an exponential law? Explain. [1]

0 1 2 3 4 5
t / hr

2

1In
 (
R

 /
 s

1
)

d) The Geiger counter does not measure the total  

activity A of the sample, but rather the count-rate  

R of those particles that enter the Geiger tube. Explain 

why this will not matter in determining the decay  

constant of the sample. [1]

e) From the graph, determine a value for the decay  

constant λ. [2]

The physicist now wishes to calculate the half-life.

f) Dene the half-life of a radioactive substance. [1]

g) Derive a relationship between the decay constant λ

and the half-life τ. [2]

h) Hence calculate the half-life of this radioactive  

isotope. [1]

4. This question is about the quantum concept.

A biography of Schrödinger contains the following sentence: 

‘Shortly after de Broglie introduced the concept of matter waves

in 1924, Schrödinger began to develop a new atomic theory.‘

a) Explain the term ‘matter waves’. State what quantity 

determines the wavelength of such waves. [2]

b) Electron diffraction provides evidence to support  

the existence of matter waves. What is electron 

diffraction? [2]

5. Light is incident on a clean metal surface in a vacuum. The 

maximum kinetic energy KE
max

 of the electrons ejected from 

the surface is measured for different values of the frequency f

of the incident light.

The measurements are shown plotted below.

2.0

1.5

1.0

0.5

0.0
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

K


m
a

x 
(1

0
19

J)

f (1014 Hz)

a) Draw a line of best t for the plotted data points. [1]

b) Use the graph to determine

 (i) the Planck constant [2]

(ii) the minimum energy required to eject an  

electron from the surface of the metal (the work 

function). [3]

c) Explain briey how Einstein’s photoelectric theory 

accounts for the fact that no electrons are emitted  

from the surface of this metal if the frequency of  

the incident light is less than a certain value. [3]

6. Thorium-227 (Th-227) undergoes a-decay with a half-life of 

18 days to form radium-223 (Ra-223). A sample of Th-227 

has an initial activity of 3.2 × 105 Bq.

Determine the activity of the remaining thorium-227 after  

50 days. [4]

7. Explain:

a) The role of angular momentum in the Bohr model for 

hydrogen [3]

b) Pair production and ahnihilation [3]

c) Quantum tunnelling [3] 

iB Qss – q   pss

i B  Q u e s t i o n s  –  Q u a n t u m  a n d  n u c l e a r  p h y s i c s

hl
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Rr r

ObseRveRs and fRames Of RefeRence

The proper treatment of large velocities involves an 

understanding of Einstein’s theory of relativity and this means 

thinking about space and time in a completely different way. 

The reasons for this change are developed in the following 

pages, but they are surprisingly simple. They logically follow 

from two straightforward assumptions. In order to see why 

this is the case we need to consider what we mean by an 

object in motion in the rst place.

A person sitting in a chair will probably think that they are at 

rest. Indeed from their point of view this must be true, but this 

is not the only way of viewing the situation. The Earth is in orbit 

around the Sun, so from the Sun’s point of view the person 

sitting in the chair must be in motion. This example shows that 

an object’s motion (or lack of it) depends on the observer. 

The calculation of relative velocity was considered on page 9. 

This treatment, like all the mechanics in this book so far, 

assumes that the velocities are small enough to be able to  

apply Newton’s laws to different frames of reference.

Galilean TRansfORmaTiOns

It is possible to formalize the relationship between two different 

frames of reference. The idea is to use the measurement in one 

frame of reference to work out the measurements that would 

be recorded in another frame of reference. The equations that 

do this without taking the theory of relativity into consideration 

are called Galilean transformations. 

The simplest situation to consider is two frames of reference  

(S and S') with one frame (S') moving past the other one (S)  

as shown below.

y′
y

frame S (stationary)

velocity v

x′
x

y
frame S

x

y′

frame S′

velocity v

x′

t= later

t= zero (two frames on top of one another)

frame S′

Each frame of reference can record the position and time of 

an event. Since the relative motion is along the x-axis, most 

measurements will be the same:

y' = y; z' = z; t' = t

If an event is stationary according to one frame, it will be 

moving according to the other frame – the frames will record 

different values for the x measurement. The transformation 

between the two is given by

x' = x vt

We can use these equations to formalize the calculation of 

velocities. The frames will agree on any velocity measured in 

the y or z direction, but they will disagree on a velocity in the 

x-direction. Mathematically,

u' = u v

For example, if the moving frame is going at 4 m s 1, then  

an object moving in the same direction at a velocity of  

15 m s 1 as recorded in the stationary frame will be measured as 

travelling at 11 m s 1 in the moving frame.

Newton’s 3 laws of motion describe how an object’s motion is 

effected. An assumption (Newton's Postulates) underlying these 

laws is that the time interval between two events is the same for 

all observers. Time is the same for all frames and the separation 

between events will also be the same in all frames. As a result, 

the same physical laws will apply in all frames.

O p T i O n  a  –  R e l a T i v i T y

failuRe Of Galilean TRansfORmaTiOn equaTiOns

If the speed of light has the same value for all observers (see box on left) then 

the Galilean transformation equations cannot work for light. 

velocity of bicycle, v

Light leaves the torch 
at velocity c with respect 
to the person on the bicycle.

Light arrives at the observer 
at velocity c (not v + c).

The theory of relativity attempts to work out what has gone wrong.

piOn decay eXpeRimenTs

In 1964 an experiment at the European 

Centre for Nuclear Reseach (CERN) measured 

the speed of gamma-ray photons that had 

been produced by particles moving close to 

the speed of light and found these photons 

also to be moving at the speed of light. This 

is consistent with the speed of light being 

independent of the speed of its source, to a 

high degree of accuracy.

The experiment analysed the decay of a 

particle called the neutral pion into two 

gamma-ray photons. Energy considerations 

meant that the pions were known to be 

moving faster than 99.9% of the speed of light 

and the speed of the photons was measured to 

be 2.9977 ± 0.0040 × 108 m s 1

Is this person at rest… …or moving at great velocity?
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mx’ to

maXwell and The cOnsTancy Of The speed Of liGhT
In 1864 James Clerk Maxwell presented a new theory at the 

Royal Society in London. His ideas were encapsulated in a 

mathematical form that elegantly expressed not only what 

was known at the time about the magnetic eld B and the 

electric eld E, but it also proposed a unifying link between 

the two – electromagnetism. The ‘rules’ of electromagnetic 

interactions are summarized in four equations known as 

Maxwell’s equations. These equations predict the nature of 

electromagnetic waves.

Most people know that light is an electromagnetic wave, but 

it is quite hard to understand what this actually means. A 

physical wave involves the oscillation of matter, whereas an 

electromagnetic wave involves the oscillation of electric and 

magnetic elds. The diagram below attempts to show this.

oscillating electric eld

z

y

x

The changing electric and magnetic elds move through space 

– the technical way of saying this is that the elds propagate

through space. The physics of how these elds propagate 

allows the speed of all electromagnetic waves (including light) 

to be predicted. It turns out that this can be done in terms of 

the electric and magnetic constants of the medium through 

which they travel. 

c = √
____

1_
ε

0
µ

0

This equation does not need to be understood in detail. The 

only important idea is that the speed of light is independent

of the velocity of the source of the light. In other words, a 

prediction from Maxwell’s equations is that the speed of light in 

a vacuum has the same value for all observers. 

This prediction of the constancy of the speed of light highlights 

an inconsistency that cannot be reconciled with Newtonian 

mechanics (where the resultant speed of light would be equal to 

the addition of the relative speed of the source and the relative 

speed of light as measured by the source). Einstein’s analysis 

forced long-held assumptions about the independence of space 

and time to be rejected.

cOmpaRinG elecTRic and maGneTic fields
Electrostatic forces and magnetic forces appear very different to 

one another. Fundamentally, however, they are just different 

aspects of one force – the electromagnetic interaction. The 

nature of which eld is observed depends on the observer. For 

example:

a) A charge moving at right angles to a magnetic eld.

An observer in a frame of reference that is at rest with 

respect to the magnetic eld will explain the force acting 

on the charge (and its acceleration) in terms of a magnetic 

force (F
M

= Bqv) that acts on the moving charge.

stationary

magnetic eld into paper

initial force on moving

charge is magneticmoving 

charge
X X X X

An observer in a frame of reference that is at rest with 

respect to the charge will explain the initial force acting 

on the charge (and its initial acceleration) in terms of 

an induced electric force that results from the cutting of 

magnetic ux.

initial force on stationary

charge is electric
stationary 

charge

moving magnetic eld

X X X X

X X X X

X X X X

b) Two identically charged particles moving with parallel 

velocities according to a laboratory frame of reference.

An observer in a frame of reference that is moving with 

the charged particles will see the particles at rest. Thus 

this observer sees the force of repulsion between the two 

charges as solely electrostatic in nature.

+q

+q

FE

force between 2 stationary charges is electrostatic

FE

An observer in a frame of reference where the laboratory 

is at rest will see the total force between the two charges 

as a combination of electrostatic and magnetic. Moving 

charges are currents and thus each moving charge creates 

its own magnetic eld which is stationary in the laboratory 

frame. Each charge is moving in the other’s stationary 

magnetic eld and will experience a magnetic force.

force between 2 moving objects is a combination 

of electric and magnetic

+q

+q

FE & FM

FE & FM
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s rtt

pOsTulaTes Of special RelaTiviTy
The special theory of relativity is based on two fundamental 

assumptions or postulates. If either of these postulates could 

be shown to be wrong, then the theory of relativity would be 

wrong. When discussing relativity we need to be even more 

than usually precise with our use of technical terms.

One important technical phrase is an inertial frame of 

reference. This means a frame of reference in which the laws 

of inertia (Newton’s laws) apply. Newton’s laws do not apply in 

accelerating frames of reference so an inertial frame is a frame 

that is either stationary or moving with constant velocity. 

An important idea to grasp is that there is no fundamental 

difference between being stationary and moving at constant 

velocity. Newton’s laws link forces and accelerations. If there is 

no resultant force on an object then its acceleration will be zero. 

This could mean that the object is at rest or it could mean that 

the object is moving at constant velocity

The two postulates of special relativity are:

• the speed of light in a vacuum is the same constant for all 

inertial observers

• the laws of physics are the same for all inertial observers.

The rst postulate leads on from Maxwell’s equations and 

can be experimentally veried. The second postulate seems 

completely reasonable – particularly since Newton’s laws do 

not differentiate between being at rest and moving at constant 

velocity. If both are accepted as being true then we need to start 

thinking about space and time in a completely different way. If 

in doubt, we need to return to these two postulates.

simulTaneiTy
One example of how the postulates of relativity disrupt our 

everyday understanding of the world around us is the concept 

of simultaneity. If two events happen together we say that they 

are simultaneous. We would normally expect that if two events 

are simultaneous to one observer, they should be simultaneous 

to all observers – but this is not the case! A simple way to 

demonstrate this is to consider an experimenter in a train.

The experimenter is positioned exactly in the middle of a 

carriage that is moving at constant velocity. She sends out 

two pulses of light towards the ends of the train. Mounted at 

the ends are mirrors that reect the pulses back towards the 

observer. As far as the experimenter is concerned, the whole 

carriage is at rest. Since she is in the middle, the experimenter 

will know that:

• the pulses were sent out simultaneously

• the pulses hit the mirrors simultaneously

• the pulses returned simultaneously.

pulses leave

together

pulses arrive

at mirrors

together

pulses return

together

The situation will seem very different if watched by a stationary 

observer (on the platform). This observer knows that light must 

travel at constant speed – both beams are travelling at the same 

speed as far as he is concerned, so they must hit the mirrors 

at different times. The left-hand end of the carriage is moving 

towards the beam and the right hand end is moving away. This 

means that the reection will happen on the left-hand end rst.

pulses leave together

1st pulse hits back wall

2nd pulse hits front wall

pulses arrive together

Interestingly, the observer on the platform does see the beams 

arriving back at the same time. The observer on the platform 

will know that:

• the pulses were sent out simultaneously

• the left-hand pulse hit the mirror before the right-hand 

pulse

• the pulses returned simultaneously.

In general, simultaneous events that take place at the same 

point in space will be simultaneous to all observers whereas 

events that take place at different points in space can be 

simultaneous to one observer but not simultaneous to another!

Do not dismiss these ideas because the experiment seems too 

fanciful to be tried out. The use of a pulse of light allowed us 

to rely on the rst postulate. This conclusion is valid whatever 

event is considered.
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lort trorto

lORenTz facTOR

The formulae for special relativity all involve a factor 

that depends on the relative velocity between different 

observers, v

We dene the Lorentz factor, γ as follows:

γ = 1_

√
1 

v2

c2

At low velocities, 

the Lorentz factor is 

approximately equal 

to one – relativistic 

effects are negligible. It 

approaches innity near 

the speed of light.

lORenTz TRansfORmaTiOns

An observer denes a frame of reference and different events

can be characterized by different coordinates according to the 

observer’s measurements of space and time. In a frame S, an event 

will be associated with a given position (x, y and z coordinates) 

and take place at a given time (t). Observers in relative uniform 

motion disagree on the numerical values for these coordinates.

The Galilean transformations equations (page 131) allowed 

us to calculate what an observer in a second frame will record 

if we know the values in one frame but assume that the 

measurement of time is the same in both frames. Einstein has 

shown that this is not correct.

y′

y

frame S (stationary)

frame S′

velocity v

x′

x

y

frame S

(x, y, z, t)

(x′, y′, z′, t′)

x

y′

frame S′

velocity v

x′

time= t time′ = t′

clock in frame S and clock in frame S′ are synchronized
to t= t′ = zero when frames coincide.
(two frames on top of one another)

Because the frames were synchronized, the observers agree 

on the measurements of y and z. To switch between the other 

measurements made by different observers we need to use the 

Lorentz transformations. These all involve the Lorentz factor, γ, as 

dened above. The derivation of these equations is not required.

x' = γ(x vt); Δx' = γ (Δx vΔt);

t' = γ( t - vx_
c2 ); Δt' = γ(Δt vΔx____

c2 )
The reverse transformations also apply. These are just a 

consequence of the relative velocity of frame S (with respect 

to frame S ') being in the opposite direction.

x = γ(x' + vt'); t = γ( t' + vx'_
c2 )

lORenTz TRansfORmaTiOn eXample

We can apply the Lorentz transformation equations to the 

situation shown on page 133. Suppose the experiment on 

the train measures the carriage to be 50.0 m long and the 

observer on the platform measures the speed of the train 

to be 2.7 × 108 m s 1 (0.90 c) to the right. In this situation, 

we know the times (t) and locations (x) are measured 

according to the experimenter on the train (frame S) and 

the experimenter on the platform is frame S'

1. According to the experimenter on the train (frame S), 

Time taken for each pulse to reach mirror at end of 

carriage is given by:

∆t = 25.0_
3.0 ×108

= 8.33 ×10 8 s

Total time taken for each pulse to complete the round 

journey to the experimenter is:

∆t
total

= 50.0_
(3.0 ×108)

= 1.67 ×10 7 s

2. According to the experimenter on the platform (frame S'), 

γ = 1_

√
1 

v2

c2

 =  1__

√
1 - 

(0.9c)2

_
c2

= 1__

√1 - 0.81
 = 1_

√0.19
= 2.29

Time taken for LH pulse to reach mirror at end of carriage 

is given by:

∆t'
(LH pulse)

= γ (∆t )
where ∆t = 8.33 ×10 8 s, v = -2.7 ×108 m s 1(relative 

velocity of platform is moving to the left) and ∆x = -25.0 m 

(pulse moving to left)

∴ ∆t'
(LH pulse)

= 2.29 (8.33 ×10 8 -
( 2.7 ×108) × ( 25.0)___

(3.0 × 108)2 )
= 1.91 ×10 7  1.72 × 10 7

= 1.9 ×10 8 s 

Time taken for RH pulse to reach mirror at end of carriage 

is given by:

∆t'
(RH pulse)

= γ(∆t )
= 2.29 (8.33 ×10 8 -

( 2.7 × 108) × 25.0__
(3.0 × 108)2 )

= 1.91 ×10 7 + 1.72 × 10 7 = 3.63 × 10 7 s

Note that the time taken by each pulse is different – they do not arrive 

simultaneously according to the experimenter on the platform.

The return time for the LH pulse is the same as the time 

taken for the RH to initially reach the mirror (in each 

case, ∆x = 25.0 m and ∆t = 8.33 × 10 8 s)

So total time taken for LH pulse to return to centre of 

carriage is

total time'
(LH pulse)

= 1.9 ×10 8 + 3.63 ×10 7 = 3.82 ×10 7 s

This is the same as the total time taken for the RH pulse so 

both experimenters observe the return of the pulses to be 

simultaneous.

Check: The above calculates that for frame S', the total 

time taken for the round trip is 3.82 ×10 7 s. The Lorentz 

transformation, can also be applied to the pulse’s journey. 

In this situation, ∆x (in frame S) = 0 as the pulse returns 

to its starting position.

total ∆t'(either pulse) = γ (∆t ) = γ∆t 

= 2.29 × 1.67 × 10 7 = 3.82 × 10 7 s

Lo
re

n
tz

 fa
ct

o
r,

 γ

4

3

2

1

speed of light, c
v

v∆x
c2

v∆x
c2

v∆x
c2
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velOciTy addiTiOn
When two observers measure each other’s velocity, they will always agree on the 

value. The calculation of relative velocity is not, however, normally straightforward. 

For example, an observer might see two objects approaching one another, as shown 

below.

person A stationary observer, C
(rst frame S)

velocity = 0.7c

person B
(second frame S′)

velocity = 0.7c

If each object has a relative velocity of 0.7 c, the Galilean transformations would 

predict that the relative velocity between the two objects would be 1.4 c. This cannot 

be the case as the Lorentz factor can only be worked out for objects travelling at less 

than the speed of light. 

The situation considered is one frame moving relative to another frame at velocity v

y frame S (stationary)

x

y′ frame S′ (moving)

velocity v

x′

Application of the Lorentz transformation gives the equation used to move between 

frames:

u' = 
u v_

1 
uv_
c2

u' – the velocity under consideration in the x-direction as measured in the 

secondframe, S'

u – the velocity under consideration in the x-direction as measured in the 

rstframe, S

v – the velocity of the second frame, S', as measured in the rst frame, S

In each of these cases, a positive velocity means motion along the positive 

x-direction. If something is moving in the negative x-direction then a negative 

velocity should be substituted into the equation.

Example
In the example above, two objects approached each other with 70% of the speed of 

light. So u’ is person A’s velocity as measured in person B’s frame of reference.

u' = relative velocity of approach – to be calculated

u = 0.7 c

v = -0.7 c

u' =
1.4 c_

(1 + 0.49)
note the sign in the brackets

=
1.4 c_
1.49

= 0.94 c

cOmpaRisOn wiTh Galilean 

equaTiOn
The top line of the relativistic addition 

of velocities equation can be compared 

with the Galilean equation for the 

calculation of relative velocities.

u' = u v

At low values of v these two equations 

give the same value. The Galilean 

equation only starts to fail at high 

velocities.

At high velocities, the Galilean 

equation can give answers of greater 

than c, while the relativistic one always 

gives a relative velocity that is less than 

the speed of light.

vot to
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irt tt

spaceTime inTeRval
Relativity has shown that our Newtonian ideas of space 

and time are incorrect. Two inertial observers will generally 

disagree on their measurements of space and time but they 

will agree on a measurement of the speed of light. Is there 

anything else upon which they will agree?

In relativity, a good way of imagining what is going on is to 

consider everything as different ‘events’ in something called 

spacetime. From one observer’s point of view, three  

co-ordinates (x, y and z) can dene a position in space. One 

further ‘coordinate’ is required to dene its position in 

time (t). An event is a given point specied by these four 

coordinates (x, y, z, t).

As a result of the Lorentz transformation, another observer 

would be expected to come up with totally different numbers 

for all of these four measurements – (x', y', z', t'). The amazing 

thing is that these two observers will agree on something. This 

is best stated mathematically:

(ct)2 - x2 y2  z2 = (ct ')2 - x'2 y'2  z2

On normal axes, Pythagoras’s theorem shows us that the 

quantity √
__________
(x2 + y2 + z2) is equal to the length of the line from 

the origin, so (x2 + y2 + z2) is equal to (the length of the line) 2. 

In other words, it is the separation in space.

(Separation in space)2 = (x2 + y2 + z2) 

l2= x2+ y2+ z2

z
l

y

x

The two observers agree about something very similar 

to this, but it includes a coordinate of time. This can be 

thought of as the separation in imaginary four-dimensional 

spacetime. 

(Separation in spacetime)2 = (ct)2 x2 y2 z2

or

(Separation in spacetime)2

= (time separation)2  (space separation)2

In 1 dimension, this is simplied to 

(ct')2  (x')2 = (ct)2  (x)2

OTheR invaRianT quanTiTies
In addition to the spacetime interval between two events (see 

box above), all observers agree on the values of three other 

quantities associated with the separation between two events 

or with reference to a given object. These are:

• Proper time interval Δt
0

• Proper length L
0

• Rest mass m
0

These four quantities are said to be invariant as they 

are always constant and do not vary with a change of 

observer. There are additional quantities, not associated with 

mechanics, that are also invariant e.g. electric charge.

pROpeR Time, pROpeR lenGTh & ResT mass
a) Proper time interval Δt

0

When expressing the time taken between events (for 

example the length of time that a rework is giving out 

light), the proper time is the time as measured in a 

frame where the events take place at the same point in 

space. It turns out to be the shortest possible time that any 

observer could correctly record for the event. 

Clock that is stationary with the
rework measures the proper 
time for which it lasted.

measuring how long a rework lasts

Moving frame measures a 
longer time for the rework 
since in this frame the
rework is moving.

If A is moving past B then B will think that time is 

running slowly for A. From A’s point of view, B is moving 

past A. This means that A will think that time is running 

slowly for B. Both views are correct!

b) Proper length L
0

As before, different observers will come up with 

different measurements for the length of the same object 

depending on their relative motions. The proper length

of an object is the length recorded in a frame where the 

object is at rest.

Ruler that is stationary with the
rework measures the proper length
for its diameter.

Moving frame measures 
a shorter length for the
rework’s diameter since 
the rework is moving
in this frame.

c) Rest mass m
0

The measurement of mass depends on relative 

velocity. Once again it is important to distinguish the 

measurement taken in the frame of the object from all 

other possible frames. The rest mass of an object is its 

mass as measured in a frame where the object is at rest. 

A particle’s rest mass does not change.
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deRivaTiOn Of The effecT fROm fiRsT

pRinciples

If we imagine a stationary observer with one light clock then 

t is the time between ‘ticks’ on their stationary clock. In this 

stationary frame, a moving clock runs slowly and t' is the 

time between ‘ticks’ on the moving clock: t' is greater than t

l
l

l′

vt ′

In the time t , 

the clock has moved on a distance = v t'

Distance travelled by the light, l' = √
_________
((vt')2 + l2)

t' = l'

c

=
√

________
(vt')2 + l2

__
c

∴ t'2 =
v2t'2 + l2
_

c2

∴ t'2(1 - v2

c2 ) = l2

c2

but
l2

c2
= t2

∴ t'2(1 
v2

c2 )= t2

or t'= 1_

√
______

1 
v2

c2

× t or t' = γt

This equation is true for all measurements of time, whether 

they have been made using a light clock or not.

deRivaTiOn Of effecT fROm lORenTz 

TRansfORmaTiOn

If frame S is a frame where two events take place at the 

same point in space, then the time interval between these 

two events must be the proper time interval, Δt
0
.  

Time dilation is then a direct consequence of the Lorentz 

transformation:

Δt' = γ(Δt - νΔx_
c2 )

Where Δt = Δt
0
, (the proper time interval) and Δx = zero 

(same point in space)

∴ time interval in frame S', Δt' = γ∆t
0

T to

liGhT clOck

A light clock is an 

imaginary device. A beam 

of light bounces between 

two mirrors – the time 

taken by the light between 

bounces is one ‘tick’ of the 

light clock. 

As shown in the derivation 

the path taken by light in 

a light clock that is moving 

at constant velocity is 

longer. We know that 

the speed of light is xed 

so the time between the 

‘ticks’ on a moving clock 

must also be longer. This 

effect – that moving clocks 

run slow – is called time 

dilation

The time between bounces 

Δt
0 
is the proper time for 

this clock in the frame 

where the clock is at rest.

l

‘tick’

‘tick’

‘tick’

pulse leaves bottom mirror

pulse bounces o top mirror

pulse returns to bottom mirror
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effecT Of lenGTh cOnTRacTiOn
Time is not the only measurement that is affected by relative motion. There is another 

relativistic effect called length contraction. According to a (stationary) observer, the 

separation between two points in space contracts if there is relative motion in that 

direction. The contraction is in the same direction as the relative motion.

moving frame

Length contracts along direction
of motion when compared
with stationary frame.

stationary frame

Length contracts by the same proportion as time dilates – the Lorentz factor is 

once again used in the equation, but this time there is a division rather than a 

multiplication.

L =
L

0_
γ

eXample
An unstable particle has a lifetime of 

4.0×10 8 s in its own rest frame. If it is 

moving at 98% of the speed of light calculate:

a) Its lifetime in the laboratory frame.

b) The length travelled in both frames.

a) γ = √
_________

1__
1  (0.98)2

= 5.025

∆t = γ∆t
0

= 5.025 × 4.0 × 10 8

= 2.01 × 10 7 s

b) In the laboratory frame, the particle moves

Length = speed × time

= 0.98 × 3 × 108 × 2.01 × 10–7

= 59.1 m

In the particle’s frame, the laboratory 

moves

∆l = 59.1_
γ

= 11.8 m

(alternatively: length = speed × time

= 0.98 × 3 × 108 × 4.0 × 10 8

= 11.8 m)

deRivaTiOn Of lenGTh cOnTRacTiOn fROm lORenTz TRansfORmaTiOn
When we measure the length of a moving object, then we are 

recording the position of each end of the object at one given 

instant of time according to that frame of reference. In other 

words the time interval measured in frame S between these two 

events will be zero, Δt = 0. In this case, the length measured Δx

is the length of the moving object L
0
. 

Length contraction is then a direct consequence of the 

Lorentz transformation, as, if we move into the frame, S',

where the object is at rest, we will be measuring the proper 

length L
0
:

Δx' = γ(Δx - vΔt)

Where Δx' = L
0
 (the proper length) and 

Δt = zero (simultaneous measurements of position of end of object)

∴ Length in frame S', L
0 
= γ(L)

L =
L

0_
γ

lgt otrto   to ort   
rtt

The muOn eXpeRimenT
Muons are leptons (see page 78) – they can be thought of as 

a more massive version of an electron. They can be created in 

the laboratory but they quickly decay. Their average lifetime is 

2.2 × 10 6 s as measured in the frame in which the muons are 

at rest.

Muons are also created high up (10 km above the surface) in 

the atmosphere. Cosmic rays from the Sun can cause them 

to be created with huge velocities – perhaps 0.99 c. As they 

travel towards the Earth some of them decay but there is still a 

detectable number of muons arriving at the surface of the Earth.

‘shower of
cosmic rays from Sun

Earth
some muons 
reach surface

some muons decay 
before reaching surface

atmosphere
10 km

Without relativity, no muons would be expected to reach the 

surface at all. A particle with a lifetime of 2.2 × 10 6 s which 

is travelling near the speed of light (3 × 108 m s 1) would be 

expected to travel less than a kilometre before decaying  

(2.2 × 10 6 × 3 × 108 = 660 m).

The moving muons are effectively moving ‘clocks’. Their high 

speed means that the Lorentz factor is high.

γ = √
________

1_
1  0.992

= 7.1

Therefore an average lifetime of 2.2 × 10 6 s in the muons’ 

frame of reference will be time dilated to a longer time as far 

as a stationary observer on the Earth is concerned. From this 

frame of reference they will last, on average, 7.1 times longer. 

Many muons will still decay but some will make it through to 

the surface – this is exactly what is observed.

In the muons’ frame they exist for 2.2 × 10 6 s on average. 

They make it down to the surface because the atmosphere (and 

the Earth) is moving with respect to the muons. This means 

that the atmosphere will be length-contracted. The 10 km 

distance as measured by an observer on the Earth will only 

be 10___
7.1

= 1.4 km. A signicant number of muons will exist long 

enough for the Earth to travel this distance. 
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spaceTime diaGRams
Spacetime separation was introduced on page 136. A spacetime 

diagram is a visual way of representing the geometry.  

Measurements can be taken from the diagram to calculate 

actual values.

We cannot represent all four dimensions on the one diagram, 

so we usually limit the number of dimensions of space that 

we represent. The simplest representation has only one 

dimension of space and one of time as shown below.

ti
m

e

space

particle at rest

particle with constant speed

particle which starts fast
and then slows down

An object (moving or stationary) is always represented as a 

line in spacetime.

Note that:

• The values on the spacetime diagram are as would be 

measured by an observer whose worldline is represented 

by the vertical axis.

• The vertical axis in the above spacetime diagram is time 

t. An alternative is to plot (speed of light × time), ct. This 

means that both axes can have the same units (m, light-

years or equivalent).

• Whatever axes are being used, by convention, the path of a 

beam of light is represented by a line at 45° to the axes. 

• The advance of proper time for any traveller can be 

calculated from the overall separation in spacetime.  In the 

traveller’s frame of reference, they remained stationary so 

the separation between two events can be calculated as 

shown below.

eXample 1 Of spaceTime diaGRams
The advance of proper time for the journey between the 

events A→B→C→D can be calculated from the values on the  

spacetime diagram.

A journey through spacetime

time/yr

C

D

B

A

light

space/ly

1

1

2

4

5

6

–1 –0.5 2 3 4

Journey Space separation  

(x)/ly

Time separation  

(t)/yr

(Spacetime separation)2

(ct)2  (x)2/ly2

Advance of proper time according to 

traveller / yr

t' = √
_________
(ct)2  (x)2

_
c

A→B 0.0 1.0 12  02 = 1 √
____
1.00 = 1.00

B→C 1.5 2.0 4  2.25 = 1.75 √
____
1.75 = 1.32

C→D 2.5 3.0 9  6.25 = 2.75 √
____
2.75 = 1.66

The total advance of proper time for the traveller is 1.00 + 1.32 + 1.66 = 3.98 yr. This compares with the advance of 6.0 years 

according to an observer whose worldline is a vertical line on this spacetime diagram. This difference is an example of time 

dilation (see page 137).

The alternative journey direct from A → D shows a greater elapsed proper time.

Journey Space separation  

(x)/ly

Time separation 

(t)/yr

(Spacetime separation)2

(ct)2  (x)2/ly2

Advance of proper time according to traveller / yr

t' = √
_________
(ct)2  (x)2

_
c

A→D 1.0 6.0 36  1 = 35 √35 = 5.92

This is always true. A direct worldline always has a greater amount of elapsed proper time than an indirect worldline.

st gr (mo gr) 1
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calculaTiOn Of Time dilaTiOn and 

lenGTh cOnTRacTiOn
Time dilation and length contraction

are quantitatively represented on spacetime 

diagrams. Refer to diagram on page 139.

a) Time dilation: In the journey direct 

from B → C, the relative velocity between 

the traveller and the stationary observer 

is 
1.5 ly_____
2.0 yrs

= 0.75 c. The Lorentz gamma 

factoris: 

γ = 1_

√
______

1 
v

2

c
2

= 1__
√

________
1  0.752

= 1.51

The journey takes 2 yrs according to the 

observer at rest. This means the proper time as 

measured by the traveller will be: 

∆t = γ∆t
0 
⇒ ∆t

0 
= ∆t_

γ
 = 2.0_

1.51
=1.32 yr 

as shown in the table on page 139.

b) Length contraction: The observer at rest 

measures the journey length from B→C 

to be 1.5  ly. The journey will be length 

contracted to be 

L =
L

0_
γ

 = 1.5_
1.51

= 0.99 ly 

The relative velocity of travel is 0.75 c, and 

the time taken to go from from B → C, in 

the traveller’s frame of reference, is 1.32 yr. 

This makes the distance according to the 

traveller to be 0.75 c × 1.32 yr = 0.99 ly as 

shown above.

eXample 2 – cuRved wORldline

time

space

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

B

O

12

11

10

9

8

7

increase in

proper time

6

5

4

3

2

1

2 3 4 5 6 7 8 9 10

= -






advance

in time











increase

in space

22 1
2





Proper time along a curved worldline from event O to event B is smaller 

than the proper time along the straight line from O to B.

st gr 2

As mentioned on page 136, the theory of relativity gives no 

preference to different inertial observers – the time dilation 

effect (moving clocks run slowly) is always the same. This 

leads to the ‘twin paradox’. In this imaginary situation, two 

identical twins compare their views of time. One twin remains 

on Earth while the other twin undergoes a very fast trip out to a 

distant star and back again. 

As far as the twin on the Earth is concerned the other twin is a 

moving observer. This means that the twin that remains on the 

Earth will think that time has been running slowly for the other 

twin. When they meet up again, the returning twin should 

have aged less.

before
after

This seems a very strange prediction, but it is correct according 

to the time dilation formula. Remember that:

• This is a relativistic effect – time is running at different rates 

because of the relative velocity between the two twins and 

not because of the distance between them.

• The difference in ageing is relative. Neither twin is getting 

younger; as far as both of them are concerned, time has been 

passing at the normal rate. It’s just that the moving twin 

thinks that she has been away for a shorter time than the 

time as recorded by the twin on the Earth.

The paradox is that, according to the twin who made the 

journey, the twin on the Earth was moving all the time and so 

the twin left on the Earth should have aged less. Whose version 

of time is correct?

The solution to the paradox comes from the realization that the 

equations of special relativity are only symmetrical when the 

two observers are in constant relative motion. For the twins to 

meet back up again, one of them would have to turn around. 

This would involve external forces and acceleration. If this is the 

case then the situation is no longer symmetrical for the twins. 

The twin on the Earth has not accelerated so her view of the 

situation must be correct.

The resolution of the twin paradox using a spacetime diagram is 

on page 141.

T t rox 1
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ResOlvinG The Twin paRadOX usinG spaceTime 

diaGRams
The diagram below is a spacetime diagram for a journey to a 

distant planet followed by an immediate return.  

According to the twin remaining on Earth:

• the distance to the planet = 3.0 ly

• relative velocity of traveller is 0.6 c

• each leg of the journey takes 3.0___
0.6

= 5.0 yr

• Total journey time = 10.0 yr

The gamma factor is 

γ = 1_

√
______

1
v

2

c
2

= 1__
√

_______
1 - 0.62

= 1.25

So according to the twin undertaking the journey:

• each leg of the journey takes 5.0____
1.25

= 4 .0 yr

• Total journey time = 8.0 yr

• the distance to the planet = 3.0____
1.25

= 2.4 ly

• relative velocity of Earth = 4.8___
8.0

= 0.6 c

In order to check whose version of time ‘is correct’, they agree 

to send light signals every year. The spacetime diagram for 

this situation in the Earth’s frame of reference is shown below

(left).

Note that there is no paradox; they agree on the number of 

signals sent and received; the travelling twin has aged less than 

the twin that stayed on Earth. 

A more complicated spacetime diagram can be drawn for the 

reference frame of the outbound traveller (below right). Note that:

• The rst four years has the travelling twin’s worldline 

vertical i.e. stationary.

• When the travelling twin turns round, she leaves her 

original frame of reference and changes to a frame where 

the Earth is moving towards her at 3
5

c (= 0.6 c).

• Her relative velocity towards the Earth with respect to 

her original frame of reference can be calculated from the 

velocity transformation equations as 15
17

c (= 0.88 c) back.

• In this frame of reference, the total time for the round trip 

would be measured as 12.5 yr

t (yr)

x (ly)

13

10
8

7

9

8

7

6

6

5

4

5

2

1

12

11

10

9

8

7

6

5

4

3

2

10.3

1.6

2.4

3.2

6.8

7.8

8.4

9.2

outbound
traveller

v = 0

Earth
v =-3/5 c

inbound traveller
v =-15/17 c

reference frame
of outbound traveller

12345678

1

t
 (

yr
)

x (ly)

2

3

4

5

6

7

8

9

10 8

7

6

5

4

3

2

1
0.8

1.6

Earth
v = 0

outbound
traveler

v = 3/5 c

inbound traveler
v = –3/5 c

light signals
from Earth

reference frame
of Earth

2.4

3.2

6.8

7.6

8.4

annual 
signals
from Earth

annual 
signals
from
traveller

lines of
simultaneity
for traveller

T rox 2
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RepResenTinG mORe Than One ineRTial fRame 

On The same spaceTime diaGRam
The Lorentz transformations describe how measurements 

of space and time in one frame can be converted into the 

measurements observed in another frame of reference.  The 

situation in each frame of reference can be visualized by using 

separate spacetime diagrams for each frame of reference  

(see page 141 for examples).

It is also possible to represent two inertial frames on the 

same spacetime diagram. A frame S’ (coordinates x' and 

ct') is moving at relative constant velocity +v according to 

a frame S (coordinates x and ct). The principles are as follows:

• The same worldline applies to both sets of coordinate axes 

(that is, to x and ct, as well as to x' and ct'). 

• The Lorentz transformation is made by changing the coordinate 

system for frame S' rather than the position of the worldline. 

• The spacetime axes for frame S has x and ct at right angles to 

one another as normal.

• The spacetime axes for frame S' has its x' and ct' axes both 

angled in towards the x = ct line (which represents a path of 

a beam of light.

• The coordinates of a spacetime event in S are read from the 

xand ct axes directly.

• The coordinates of a spacetime event in S' are measured by 

drawing lines parallel to the ct' and x' axes until they hit the 

x' and ct' axes. 

ct'

B

C

D

A

x'

ct

x

light

Frame S Frame S'

θ

1. Events A & B are simultaneous in frame S but are not

simultaneous in frame S' (A occurs before B)

tan θ = 2
8

= 0.25

∴ relative velocity of frames S’ and S = 0.25 c

2. Events C & D occur at same location in frame S'.

Events C & D occur at different locations in frame S

3. A pulse of light emitted by event A arrives at event D 

according to both frames of reference. It cannot arrive at 

events B or C.

Mathematically for the above process to agree with the Lorentz 

transformation calculations, the following must apply:

• The angle between the ct' axis (the worldline for the origin 

of S') and the ct axis is the same as the angle between the x'

axis and the x axis. It is:

θ = tan 1(v
c )

• The scales used by the axes in S' are different to the scales 

used by the axes in S.  

• A given value is represented by a greater length on the ct'

axis when compared with the ct axis. 

• A given value is represented by a greater length on the x'

axis when compared with the x axis.

• The ratio of the measurements on the axes depends on the 

relative velocity between the frames. The equation (which 

does not need to be recalled) is:

ratio of units
ct'_
ct

= √
______

1 + v2

c2_

1 v2

c2

(x', ct') = (0, 1)

(x, ct) = (γv/c, γ)

ct'
ct

x'

x

(x', ct') = (1, 0)

(x, ct) = (γ γ v/c)
θ

θ

Summary
• At greater speed:

◊ the S' axes swing towards the x = ct line as the angle θ

increases.

◊ the ct' and x' axes are more stretched when compared 

with the ct and x axes.

• Events that are simultaneous in S are on the same horizontal 

line.

• Events that are simultaneous in S' are on a line parallel to 

the x' axis.

st gr 3
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E=mc
2

The most famous equation in all of physics is surely Einstein’s 

mass–energy relationship E = mc2, but where does it come 

from? By now it should not be a surprise that if time and 

length need to be viewed in a different way, then so does 

energy. 

According to Newton’s laws, a constant force produces a 

constant acceleration. If this was always true then any velocity 

at all should be achievable – even faster than light. All we 

have to do is apply a constant force and wait. 

constant acceleration

constant force – velocity as
predicted by Newtonve

lo
ci

ty

time

speed of light, c

In practice, this does not happen. As soon as the speed of an 

object starts to approach the speed of light, the acceleration 

gets less and less even if the force is constant.

ve
lo

ci
ty

time

speed of light, c

constant force – velocity as
predicted by Einstein

acceleration decreases 
as speed gets close to c

The force is still doing work (= force × distance), therefore 

the object must still be gaining kinetic energy and a new 

relativistic equation is needed for energy:

E = γ m
0
c2

Note that some textbooks compare this equation with the 

denition of rest energy (E
0 
= m

0
c2) in order to dene a 

concept of relativistic mass that varies with speed (m = γm
0
). 

The current IB syllabus does not encourage this approach.

The preferred approach is to see rest mass as invariant and to 

adopt a new relativistic formula for kinetic energy:

Total energy = rest energy + kinetic energy = γm
0
c2

rest energy = m
0
c2

so, kinetic energy E
K

= (γ - 1)m
0
c2

mass and eneRGy
Mass and energy are equivalent. This means that energy can 

be converted into mass and vice versa. Einstein’s mass–energy 

equation can always be used, but one needs to be careful about 

how the numbers are substituted. Newtonian equations (such 

as KE =
1
2

mv2 or momentum = mv) will take different forms 

when relativity theory is applied.

The energy needed to create a particle at rest is called the rest 

energy E
0
 and can be calculated from the rest mass:

E
0
= m

0
c2

If this particle is given a velocity, it will have a greater total 

energy.  

E = γm
0
c2

m  rgHL
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uniTs
SI units can be applied in these equations. Sometimes, 

however, it is useful to use other units instead.

At the atomic scale, the joule is a huge unit. Often the 

electronvolt (eV) is used. One electronvolt is the energy 

gained by one electron if it moves through a potential 

difference of 1 volt. Since 

Potential difference =
energy difference__

charge 

1 eV = 1 V × 1.6 × 10 19 C

= 1.6 × 10 19 J

In fact the electronvolt is too small a unit, so the standard SI 

multiples are used

1 keV = 1000 eV

1 MeV = 106 eV etc.

Since mass and energy are equivalent, it makes sense to have 

comparable units for mass. The equation that links the two  

(E = mc2) denes a new unit for mass – the MeV c 2. The 

speed of light is included in the unit so that no change of 

number is needed when switching between mass and energy – 

If a particle of mass of 5 MeV c 2 is converted completely into 

energy, the energy released would be 5 MeV. It would also be 

possible to use keV c 2 or GeV c 2 as a unit for mass.

In a similar way, the easiest unit for momentum is the 

MeV c 1. This is the best unit to use if using the equation 

which links relativistic energy and momentum.

equaTiOns
The laws of conservation of momentum and conservation 

of energy still apply in relativistic situations. However the 

concepts often have to be rened to take into account the new 

ways of viewing space and time. 

For example, in Newtonian mechanics, momentum p is 

dened as the product of mass and velocity.

p = mv

In relativity it has a similar form, but the Lorentz factor needs 

to be taken into consideration.

p = γ m
0
 v

The momentum of an object is related to its total energy. In 

relativistic mechanics, the relationship can be stated as 

E2 = p2c2 + m
0

2 c4

In Newtonian mechanics, the relationship between energy 

and momentum is 

E =
p2

_
2m

Do not be tempted to use the standard Newtonian equations– 

if the situation is relativistic, then you need to use the 

relativistic equations. 

eXample
The Large Electron / Positron (LEP) collider at the European 

Centre for Nuclear Research (CERN) accelerates electrons to 

total energies of about 90 GeV. These electrons then collide 

with positrons moving in the opposite direction as shown below. 

Positrons are identical in rest mass to electrons but carry a 

positive charge. The positrons have the same energy as the 

electrons.

Electron

●

Total energy = 90 GeV

Electron

●

Total energy = 90 GeV

a) Use the equations of special relativity to calculate,

(i) the velocity of an electron (with respect to the 

laboratory);

Total energy = 90 GeV = 90000 MeV

Rest mass = 0.5 MeVc 2 ∴ γ = 18000 (huge)

∴ v ≃ c

(ii) the momentum of an electron (with respect to the 

laboratory).

p2 c2 = E2 m
0

2 c4

≃ E2

p ≃ 90 GeVc 1

b) For these two particles, estimate their relative velocity of 

approach.

since γ so large

relative velocity ≃ c

c) What is the total momentum of the system (the two 

particles) before the collision?

zero

d) The collision causes new particles to be created.

(i) Estimate the maximum total rest mass possible for the 

new particles.

Total energy available = 180 GeV

∴ max total rest mass possible = 180 GeVc 2

(ii) Give one reason why your answer is a maximum

Above assumes that particles were created at rest

Rtt ot  rgHL
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paRTicle acceleRaTiOn and elecTRic chaRGe
In a particle accelerator (e.g. a linear accelerator or cyclotron), 

charged particles are accelerated up to very high energies. The 

basic principle is to pass the charged particles through a series 

of potential differences and each time, the particle’s total 

energy increases as a result. The increase in kinetic energy 

(ΔE
K
) as a result of a charge q passing through a potential 

difference V is given by: 

qV = ΔE
K

phOTOns
Photons are particles that have a zero rest mass and travel at 

the speed of light, c. Their total energy and their frequency f is 

linked by Planck’s constant h:

E = hf

The relativistic equation that links total energy, E and 

momentum, p, must also apply to photons: 

E2 = p2c2 + m
0

2c4

The rest mass of a photon is zero so the momentum of a  

photon is: 

p = E
c =

hf
c = h

λ

eXample: decay Of a piOn
A neutral pion (π0) is a meson of rest mass m

0
= 135.0 MeV c 2. 

A typical mode of decay is to convert into two photons: 

π0 → 2γ

The wavelength of these photons can be calculated:

a) Decay at rest

If the pion was at rest when it decayed, each photon would 

have half the total energy of the pion:

E = 67.5 MeV = 67.5 × 106 × 1.6 × 10 19 J 

= 1.08 × 10 11 J

Planck’s constant can be used to calculate the wavelength  

of one of the photons:

E = h
c

λ

λ = h
c
E

= 6.63 × 10 34 × 3.0 × 108
__
1.08 × 10 11

= 1.84 × 10 14 m

The momentum of the pion was initially zero as it was at rest. 

Conservation of momentum means that the photons will be 

emitted in opposite directions. The total momentum of each 

photon add together to give a total, once again, of zero.

b) Decay while moving

Suppose the pion was moving forward when it decayed 

with a total energy 270.0 MeV c 2; the photons will be 

emitted as shown below:

after photon 1

photon 2

before

pion

θ

θ

Note that in this example, total energy 2m
0
c2, so γ = 2 so v 

= 0.866 c

Each photon will have a total energy of  

135 MeV = 2.16 × 10 11J

and a momentum of 135 MeV c 1. The wavelengths of the 

photons will be:

λ = h c
E

= 6.63 × 10 34 × 3.0 × 108
__
2.16 × 10 11

= 9.21 × 10 15 m

Initial total momentum for the pion in the forward direction 

can be calculated from 

E2 = p2c2 + m
0

2 c4

p2 c2 = E2 m
0

2 c4 = (4  1)m
0

2 c4

p = √3 m
0

c = 1.73 × 135.0 = 233.8 MeV c 1

So conservation of momentum in forward direction is:

233.8 = 2 × 135 × cos θ

∴ cos θ = 233.8_
270

= 0.866

∴ θ = 30°

eXample
An electron is accelerated through a pd of 1.0 × 106 V. 

Calculate its velocity.

Energy gained = 1.0 × 106 × 1.6 × 10 19 J

= 1.6 × 10 13 J

E
0
= m

0
c2 = 9.11 × 10 31 × (3 × 108)2

= 8.2 × 10 14 J

∴ Total energy = 1.6 × 10 13 + 8.2 × 10 14

= 2.42 × 10 13 J

∴ γ = 2.42 × 10 13
__
8.2 × 10 14

= 2.95

velocity = √
______

1 - 1_
γ2

c

= 0.94 c
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pRinciple Of equivalence
One of Einstein’s ‘thought experiments’ considers how an observer’s view of the world would change if they were accelerating. The 

example below considers an observer inside a closed spaceship. 

There are two possible situations to compare. 

• The rocket could be far away from any planet but accelerating forwards. 

• The rocket could be at rest on the surface of a planet.

dropped object 
will ‘fall’ 
towards oor

accelerating
forward

astronaut feels a force when rocket is 
accelerating forward

astronaut feels a force when rocket is 
at rest on the surface of a planet

dropped 

object will fall 

towards oor

rocket at rest

on planet

planet

Although these situations seem completely different, the observer inside the rocket would interpret these situations as being 

identical.

This is Einstein’s ‘principle of equivalence’ – a postulate that states that there is no difference between an accelerating frame of 

reference and a gravitational eld.

From the principle of equivalence, it can be deduced that light rays are bent in a gravitational eld (see below) and that time slows 

down near a massive body (see page 147).

Gr rtt – t  rHL

bendinG Of liGhT
Einstein’s principle of equivalence suggests that a gravitational 

eld should bend light rays! There is a small window high up in 

the rocket that allows a beam of light to enter.

In both of the cases in diagrams 1 and2, the observer is an 

inertial observer and would see the light shining on the wall at 

the point that is exactly opposite the small window. If, however, 

the rocket was accelerating upwards (see diagram3) then the 

beam of light would hit a point on the wall below the point 

that is opposite the small window. 

But Einstein’s principle of equivalence states that there is 

no difference between an accelerating observer and inertial 

observer in a gravitational eld. If this is true then light should 

follow a curved path in a gravitational eld as shown in 

diagram 4. This effect does happen!

1  rocket at rest
    in space

window
light hits
wall 
opposite
window

rocket

moves 

upwards at

constant

velocity

light hits

wall 

opposite

window 

nal position of

window when

light hits

original 

position

of window

2  rocket moving with

    constant velocity

nal position 
of window 
when 
light hits

3  rocket accelerating
   upwards

light hits 
below window 
as rocket has 
speeded up

rocket 
accelerating

light hits below

window in an 

accelerating

rocket and in a 

stationary rocket 

in a gravitational 

eld

view

inside

rocket

4  rocket at rest in a
     gravitational eld
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maThemaTics

This gravitational time dilation effect can be mathematically 

worked out for a uniform gravitational eld g. The change in 

frequency ∆f is given by 

∆f___
f

= 
g∆h_
c2

where

f is the frequency emitted at the source

g is the gravitational eld strength (assumed to be 

constant)

∆h is the height difference and 

c is the speed of light.

cOncepT

The general theory of relativity makes other predictions that 

can be experimentally tested. One such effect is gravitational 

red shift – clocks slow down in a gravitational eld. In other 

words a clock on the ground oor of a building will run slowly 

when compared with a clock in the attic – the attic is further 

away from the centre of the Earth. 

A clock on the ground

oor runs slow when

compared with a 

clock in the attic

The same effect can be imagined in a different way. We have 

seen that a gravitational eld affects light. If light is shone 

away from a mass (for example the Sun), the photons of light 

must be increasing their gravitational potential energy as they 

move away. This means that they must be decreasing their 

total energy. Since frequency is a measure of the energy of a 

photon, the observed frequency away from the source must 

be less than the emitted frequency.

At the top of the 

building, the photon 

has less energy, and 

so a lower frequency, 

than when it was at 

the bottom.

The oscillations of the light can be imagined as the pulses of a 

clock. An observer at the top of the building would perceive 

the clock on the ground oor to be running slowly.

eXample

A UFO travels at such a speed to remain above one point on 

the Earth at a height of 200 km above the Earth’s surface. A 

radio signal of frequency of 110 MHz is sent to the UFO.

(i) What is the frequency received by the UFO?

(ii) If the signal was reected back to Earth, what would be 

the observer frequency of the return signal? Explain your 

answer.

(i) f = 1.1 × 108 Hz

g = 10 m s–2

∆h = 2.0 × 105m

∴ ∆f = 
10 × 2.0 × 105
__

(3 × 108)2
× 1.1 × 108 Hz

= 2.4 × 10–3 Hz

∴ f received = 1.1 × 108 – 2.4 × 10–3

= 109999999.998 Hz

≈ 1.1 × 108 Hz

(ii) The return signal will be gravitationally blue shifted. 

Therefore it will arrive back at exactly the same 

frequency as emitted.

Grtto r tHL
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evidence TO suppORT GeneRal RelaTiviTy

Bending of star light
The predictions of general relativity, just like those of special relativity, seem so strange that we need strong experimental evidence. 

One main prediction was the bending of light by a gravitational eld. One of the rst experiments to check this effect was done by a 

physicist called Arthur Eddington in 1919. 

The idea behind the experiment was to measure the deection of light (from a star) as a result of the Sun’s mass. During the day, 

the stars are not visible because the Sun is so bright. During a solar eclipse, however, stars are visible during the few minutes when 

the Moon blocks all of the light from the Sun. If the positions of the stars during the total eclipse were compared with the positions 

of the same stars recorded at a different time, the stars that appeared near the edge of the Sun would appear to have moved.

not to scale!Earth

Moon

Sun

actual position of star

apparent position
of star

usual position of star in sky 
(compared with others)

apparent position
during eclipse

The angle of the shift of these stars turned out to be exactly the angle as predicted by Einstein’s general theory of relativity.

Gravitational lensing
The bending of the path of light or the warping of spacetime (depending on which description you prefer) can also produce some 

very extreme effects. Massive galaxies can deect the light from quasars (or other very distance sources of light) so that the rays 

bend around the galaxy as shown below.

observer

not to scale!

massive galaxy

image of quasar

image of quasar

quasar

In this strange situation, the galaxy is acting like a lens and we can observe multiple images of the distant quasar.

evidence TO suppORT GRaviTaTiOnal Red shifT

Pound–Rebka–Snider experiment
The decrease in the frequency of a photon as it climbs out 

of a gravitational eld can be measured in the laboratory. 

The measurements need to be very sensitive, but they have 

been successfully achieved on many occasions. One of the 

experiments to do this was done in 1960 and is called the 

Pound–Rebka experiment. The frequencies of gamma-ray 

photons were measured after they ascended or descended 

Jefferson Physical Laboratory Tower at Harvard University.

The original Pound–Rebka experiment was repeated with 

greater accuracy by Pound and Snider.

Atomic clock frequency shift
Because they are so sensitive, comparing the difference in 

time recorded by two identical atomic clocks can provide a 

direct measurement of gravitational red shift. One of the clocks 

is taken to high altitude by a rocket, whereas a second one 

remains on the ground. The clock that is at the higher altitude 

will run faster.

Global positioning system
For the global positioning system to be so accurate, general 

relativity must be taken into account in calculating the details of 

the satellite's orbit.

sortg HL
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effecT Of GRaviTy On spaceTime
The Newtonian way of describing gravity is in terms of the 

forces between two masses. In general relativity the way of 

thinking about gravity is not to think of it as a force, but as 

changes in the shape (warping) of spacetime. The warping of 

spacetime is caused by mass. Think about two travellers who 

both set off from different points  on the Earth’s equator and 

travel north.

On the surface of the Earth, two travellers 

who set o parallel to one another…

…may eventually meet:

P Q

QP

As they travel north they will get closer and closer together. 

They could explain this coming together in terms of a force 

of attraction between them or they could explain it as a 

consequence of the surface of the Earth being curved. The 

travellers have to move in straight lines across the surface of the 

Earth so their paths come together.

Einstein showed how spacetime could be thought of as being 

curved by mass. The more matter you have, the more curved 

spacetime becomes. Moving objects follow the curvature of 

spacetime or in other words, they take the shortest path in 

spacetime. As has been explained, it is very hard to imagine 

the four dimensions of spacetime. It is easier to picture what is 

going on by representing spacetime as a at two-dimensional 

sheet.

spacetime represented by at sheet

Any mass present warps (or bends) spacetime. The more mass 

you have the greater the warping that takes place. This warping 

of spacetime can be used to describe the orbit of the Earth 

around the Sun. The diagram below represents how Einstein 

would explain the situation. The Sun warps spacetime around 

itself. The Earth orbits the Sun because it is travelling along 

the shortest possible path in spacetime. This turns out to be a 

curved path.

Sun

• Mass ‘tells’ spacetime how to curve.

• Spacetime ‘tells’ matter how to move.

applicaTiOns Of GeneRal RelaTiviTy TO The univeRse as a whOle
General relativity is now fundamental to understanding how the objects in the Universe interact with spacetime and thus how they 

affect each other. This allows far-reaching predictions to be created about the future development and fate of the Universe – see 

cosmology sections of the astrophysics option (option D).

The development of the Universe can be modelled in detail. Many current aspects (e.g. its large-scale structure, the creation of the 

elements and the presence of cosmic background radiation) are predicted.

Very large mass black holes may exist at the centres of many galaxies. General relativity predicts how these may interact with matter 

and astronomers are searching for appropriate evidence.

General relativity predicts the existence of gravitational waves associated with high energy events such as the collision of two black 

holes. Experimental evidence for the existence of these waves is being sought.

crtr o tHL
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descRipTiOn

When a star has used up all of its nuclear fuel, the force of 

gravity makes it collapse down on itself (see the astrophysics 

option for more details). The more it contracts the greater the 

density of matter and thus the greater the gravitational eld 

near the collapsing star. In terms of general relativity, this 

would be described in terms of the spacetime near a collapsing 

star becoming more and more curved. The curvature of 

spacetime becomes more and more severe depending on the 

mass of the collapsing star.

If the collapsing star is less than about 1.4 times the mass of the 

Sun, then the electrons play an important part in eventually 

stopping this contraction. The star that is left is called a white 

dwarf. If the collapsing star is greater than this, the electrons 

cannot halt the contraction. A contracting mass of up to three 

times the mass of the Sun can also be stopped – this time the 

neutrons play an important role and the star that is left is called 

a neutron star. The curvature of spacetime near a neutron star is 

more extreme than the curvature near a white dwarf.

At masses greater than this we do not know of any process that 

can stop the contraction. Spacetime around the mass becomes 

more and more warped until eventually it becomes so great that 

it folds in over itself. What is left is called a black hole. All the 

mass is concentrated into a point – the singularity

spacetime with 
extreme curvature

eXample

Calculate the size of a black hole that has the same mass as 

our Sun (1.99 × 1030 kg).

R
Sch

=  2 × 6.67 × 10 11 × 1.99 × 1030
___

(3 × 108)2

= 2949.6 m

= 2.9 km

schwaRzchild Radius

The curvature of spacetime near a black hole is so  

extreme that nothing, not even light, can escape. Matter  

can be attracted into the hole, but nothing can get out  

since nothing can travel faster than light. The gravitational 

forces are so extreme that light would be severely  

deected near a black hole.

photon sphere black hole

If you were to approach a black hole, the gravitational forces 

on you would increase. The rst thing of interest would be 

the photon sphere. This consists of a very thin shell of light 

photons captured in orbit around the black hole. As we fall 

further in, the gravitational forces increase and so the escape 

velocity at that distance also increases. 

photon sphere 

singularity

event horizon

At a particular distance from the centre, called the 

Schwarzchild radius, we get to a point where the escape 

velocity is equal to the speed of light. Newtonian mechanics 

predicts that the escape velocity v from a mass M of radius r is 

given by the formula

v = √
_____
2GM_

r

If the escape velocity is the speed of light, c, then the 

Schwarzchild radius would be given by

R
S
= 2GM_

c
2

It turns out that this equation is also correct if we use 

the proper equations of general relativity. If we cross the 

Schwarzchild radius and get closer to the singularity, we would 

no longer be able to communicate with the Universe outside. 

For this reason crossing the Schwarzchild radius is sometimes 

called crossing the event horizon. An observer watching an 

object approaching a black hole would see time slowing down 

for the object.

The observed time dilation is worked out from

∆t =
∆t

0_

√
______

1 
R

S_
r

where r is the distance from the black hole.
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1. In the laboratory frame of reference, a slow moving alpha 

particle travels parallel to stationary metal wire that carries 

an electric current.  In this frame of reference, the velocity 

of the alpha particle and the drift velocity of the electrons in 

the wire are identical.  Explain the origin of the force on the 

alpha particle in the frame of reference of

a) The alpha particle [2]

b) The laboratory [2]

2. Two identical rockets are moving along the same straight 

line as viewed from Earth. Rocket 1 is moving away from 

the Earth at speed 0.80 c relative to the Earth and rocket 2 

is moving away from rocket 1 at speed 0.60 c relative to 

rocket 1

rocket 1

0.80 c relative

to Earth

0.60 c relative

to rocket 1

a) Calculate the velocity of rocket 2 relative to the Earth, 

using the

(i) Galilean transformation equation. [1]

(ii) relativistic transformation equation.  [2]

b) Comment on your answers in (a). [2]

c) The rest mass of rocket 1 is 1.0 × 103 kg. Determine the 

relativistic kinetic energy of rocket 1, as measured by  

an observer on Earth. [3]

3. The spacetime diagram below shows two events, A and B, 

as observed in a reference frame S.  Each event emits a light 

signal.

Use the diagram to calculate, according to frame S, 

a) The time between event A and event B [2]

b) The time taken for the light signal leaving event A to 

arrive at the position of event B. [2]

c) The location of a stationary observer who receives the  

light signal from events A simultaneously with  

receiving the light signal from event B. [2]

d) The velocity of a moving frame of reference in which 

event A and event B occurred simultaneously. [4]

B

A

1

2

3

4

5

6

10 2 3 4 5 6 7
x / ly

ct / ly

4. Relativity and simultaneity

a) State two postulates of the special theory of relativity. [2]

Einstein proposed a ‘thought experiment’ along the 

following lines. Imagine a train of proper length 100 m 

passing through a station at half the speed of light. There 

are two lightning strikes, one at the front and one at the 

rear of the train, leaving scorch marks on both the train 

and the station platform. Observer S is standing on the 

station platform midway between the two strikes, while 

observer T is sitting in the middle of the train. Light from 

each strike travels to both observers.

0.5 c

b) If observer S on the station concludes from his 

observations that the two lightning strikes occurred 

simultaneously, explain why observer T on the train  

will conclude that they did not occur simultaneously. [4]

c) Which strike will T conclude occurred rst? [1]

d) What will be the distance between the scorch marks  

on the train, according to T and according to S? [3]

e) What will be the distance between the scorch marks  

on the platform, according to T and according to S? [2]

HL

5. In a laboratory experiment two identical particles (P and Q), each 

of rest mass m
0
, collide. In the laboratory frame of reference, 

they are both moving at a velocity of 2/3 c. The situation before 

the collision is shown in the diagram below.

Before:

2/3 c 2/3 c

P Q

a) In the laboratory frame of reference,

(i) what is the total momentum of P and Q? [1]

(ii) what is the total energy of P and Q? [3]

The same collision can be viewed according to P’s frame  

of reference as shown in the diagrams below.

velocity = v

P (rest) Q

b) In P’s frame of reference,

(i) what is Q’s velocity, v? [3]

(ii) what is the total momentum of P and Q? [3]

(iii) what is the total energy of P and Q? [3]

c) As a result of the collision, many particles and photons are 

formed, but the total energy of the particles depends on 

the frame of reference. Do the observers in each frame of 

reference agree or disagree on the number of particles and 

photons formed in the collision? Explain your answer. [2]

6. The concept of gravitational red-shift indicates that clocks run 

slower as they approach a black hole.

a) Describe what is meant by

(i) gravitational red-shift. [2]

(ii) spacetime. [1]

(iii) a black hole with reference to the concept of 

spacetime. [2]

b) A particular black hole has a Schwarzschild radius R. A 

person at a distance of 2R from the event horizon of the 

black hole measures the time between two events to be 10 s. 

Deduce that for a person a very long way from the black hole 

the time between the events will be measured as 12 s. [1]

ib qto – oto a – rtt
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ConCepts

The complex motion of a rigid body can be analysed as a 

combination of two types of motion: translation and rotation. 

Both these types of motion are studied separately in this study 

guide (pages 9 and 65).

mg

A bottle thrown through the air – the centre of mass of the 

bottle follows a path as predicted by projectile motion. In 

addition the bottle rotates about one (or more) axes.

Translational motion is described using displacements, velocities 

and linear accelerations; all these quantities apply to the centre 

of mass of the object. Rotational motion is described using 

angles (angular displacement), angular velocities and angular 

accelerations; all these quantities apply to circular motion about a 

given axis of rotation.

The concept of angular velocity, ω, has already been introduced 

with the mechanics of circular motion (see page 66) and is 

linked to the frequency of rotation by the following formula:

angular velocity

ω = 2π f

Translational motion Rotational motion

Every particle in the object 

has the same instantaneous 

velocity

Every particle in the object 

moves in a circle around the 

same axis of rotation

Displacement, s, measured 

in m

Angular displacement, θ, 

measured in radians [rad]

Velocity, v, is the rate of 

change of displacement 

measured in m s 1

v =
ds

dt

Angular velocity, ω, is the 

rate of change of angle 

measured in rad s 1

ω =
dθ_
dt

Acceleration, a, is the rate of 

change of velocity measured 

in m s 2

a =
dv_
dt

Angular acceleration, α, is 

the rate of change of angular 

velocity measured in rad s 2

α =
dω_
dt

Comparison of linear and rotational motion

equations of uniform angular aCCeleration

The denitions of average linear velocity and average linear 

acceleration can be rearranged to derive the constant acceleration 

equations (page 11). An equivalent rearrangement derives the 

equations of constant angular acceleration.

Translational motion Rotational motion

Displacement s

Initial velocity u

Final velocity v

Time taken t

Acceleration a

[constant]

Angular displacement θ

Initial angular velocity ω
i

Final angular velocity ω
f

Time taken t

Angular acceleration α

[constant]

v = u + at ω
f
= ω

i
+ αt

s = ut +
1
2

at2 θ = ω
i
t +

1
2
αt2

v2 = u2 + 2as ω
f

2 = ω
i

2 + 2αθ

s =
(v + u)t_

2
θ =

(ω
f
+ ω

i
 )t

_
2

t   
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example: BiCyCle wheel

When a bicycle is moving forward at constant velocity v, the 

different points on the wheel each have different velocities. 

The motion of the wheel can be analysed as the addition of 

the translational and the rotational motion.

a) Translational motion

The bicycle is moving forward at velocity v so the 

wheel’s centre of mass has forward translational motion 

of velocity v. All points on the wheel’s rim have a 

translational component forward at velocity v

translational component of
velocity ν

b) Rotational motion

The wheel is rotating around the central axis of rotation 

at a constant angular velocity ω. All points on the wheel’s 

rim have a tangential component of velocity v (= rω)

ν

ν

ν

tangential 
component of
velocity ν

c) Combined motion

The motion of the different points on the wheel’s rim is 

the vector addition of the above two components:

Point at side of  wheel is moving

with instantaneous velocity of

2ν, at 45° to the horizontal

Point in contact with

ground is at rest.

Instantaneous

velocity is zero

Point at top of wheel is 

moving with instantaneous 

velocity of 2ν, forward
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relationship Between linear and rotational 

quantities
When an object is just rotating about a xed axis, and there is no 

additional translational motion of the object, all the individual 

particles that make up that object have different instantaneous 

values of linear displacement, linear velocity and linear 

acceleration. They do, however, all share the same instantaneous 

values of angular displacement, angular velocity and angular 

acceleration. The link between these values involves the distance 

from the axis of rotation to the particle.

m2
r2

m1

V1

V1 ≠ V2

r1
V2, instantaneous 

velocity

instantaneous velocity

Rotation about
axis. All particles
have same
instantaneous
angular velocity

particle 1

particle 2

axis
of rotation
(into the page)

ω

a) Displacements

Distance travelled 

on circular path

Angular displacement

Distance from axis of 

rotation to particle

= rθ

b) Instantaneous velocities

Linear instantaneous 

velocity (along the 

tangent)

Angular velocity

Distance from axis of 

rotation to particle

v = ω

c) Accelerations 

The total linear acceleration of any particle is made up of 

two components:  

a) The centripetal acceleration, a
r
, (towards the axis 

of rotation – see page 65), also known as the radial 

acceleration.   

Tangential velocity
Angular velocity

Distance from axis of 

rotation to particle

a
r
= v2

_

r
= rω2

Centripetal acceleration 

(along the radius)

b) An additional tangential acceleration, a
t
, which results 

from an angular acceleration taking place.  If α = 0, then 

a
t
= 0.

Angular acceleration

Distance from axis of 

rotation to particle

a
t
= rα

Instantaneous acceleration 

(along the tangent)

The total acceleration of the particle can be found by vector 

addition of these two components: a = r√
______
ω4 + α2

t   
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the moment of a forCe: the torque Γ
A particle is in equilibrium if its acceleration is zero.  This occurs 

when the vector sum of all the external forces acting on the 

particle is zero (see page 16).  In this situation, all the forces 

pass through a single point and sum to zero.  The forces on 

real objects do not always pass through the same point and can 

create a turning effect about a given axis. The turning effect is 

called the moment of the force or the torque. The symbol for 

torque is the Greek uppercase letter gamma, Γ. 

The moment or torque Γ of a force, F about an axis is dened as 

the product of the force and the perpendicular distance from 

the axis of rotation to the line of action of the force.

= Fr⊥

forcemoment or torque

perpendicular distance

Γ = Fr sin θ

axis of

r

rotation

perpendicular
distance from O

to line of action of F

r⊥

force F

O

line of action of F

θ

θ

Note:

• The torque and energy are both measured in N m, but only 

energy can also be expressed as joules.

• The direction of any torque is clockwise or anticlockwise 

about the axis of rotation that is being considered. For the 

purposes of calculations, this can be treated as a vector 

quantity with the direction of the torque vector considered 

to be along the axis of rotation. In the example above, the 

torque vector is directed into the paper. If the force F was 

applied in the opposite direction, the torque vector would be 

directed out of the paper.

Couples
A couple is a system of forces that has no resultant force but 

which does produce a turning effect.  A common example is 

a pair of equal but anti-parallel forces acting with different 

points of application.  In this situation, the resultant torque 

is the same about all axes drawn perpendicular to the plane 

dened by the forces.

arbitrary
axis

Torque of forces = F(x+ d) - Fx

= Fd clockwise
This result is independent of position of axis, O

F

O

F

d

x

rotational and translational equiliBrium
If a resultant force acts on an object then it must accelerate 

(page 17).  When there is no resultant force acting on an 

object then we know it to be in translational equilibrium 

(page 16) as this means its acceleration must be zero.  

Similarly, if there is a resultant torque acting on an object then 

it must have an angular acceleration, α.  Thus an object will 

be in rotational equilibrium only if the vector sum of all the 

external torques acting on the object is zero.

If an object is not moving and not rotating then it is said to be 

in static equilibrium. This must mean that the object is in 

both rotational and translational equilibrium.

For rotational equilibrium: 

α = 0 ∴ ∑ Γ = 0

In 2D problems (in the x-y plane), it is sufcient to show 

that there is no torque about any one axis perpendicular 

to the plane being considered (parallel to the z-axis). In 3D 

problems, three axis directions (x, y and z) would need to be 

considered.

For translational equilibrium: 

a = 0 ∴ ∑ F = 0

In 2D problems, it is sufcient to show that there is no 

resultant force in two different directions. In 3D problems 

three axis directions (x, y and z) would need to be considered.

5 N
axis into

3 N f N

In the example above, for rotational equilibrium: 

f = 2.25 N

t   b
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Centre of gravity
The effect of gravity on all the different parts of the 

object can be treated as a single force acting at the 

object’s centre of gravity. 

If an object is of uniform shape and density, the centre 

of gravity will be in the middle of the object. If the 

object is not uniform, then nding its position is not 

trivial – it is possible for an object’s centre of gravity to 

be outside the object. Experimentally, if you suspend 

an object from a point and it is free to move, then the 

centre of gravity will always end up below the point of 

suspension.

example 1

When a car goes across a bridge, the forces (on the bridge) are

as shown.

Taking moments about right-hand support:

clockwise moment= anticlockwise moment

(R1× 20 m) = (Wb× 10 m) + (Wc× 4 m)

Taking moments about left-hand support:

(R2× 20 m) = (Wb× 10 m) + (Wc× 16 m)

Also, since bridge is not accelerating: 

R1+ R2=Wb+Wc

10 m 6 m 4 m
R2R1

Wb, weight of bridge

Wc, weight of car

When solving problems to do with rotational equilibrium 

remember:

• All forces at an axis have zero moment about that axis.

• You do not have to choose the pivot as the axis about which 

you calculate torques, but it is often the simplest thing to do 

(for the reason above).

• You need to remember the sense (clockwise or anticlockwise).

• When solving two-dimensional problems it is sufcient to show 

that an object is in rotational equilibrium about any ONE axis.

• Newton’s laws still apply. Often an object is in rotational 

AND in translational equilibrium. This can provide a simple 

way of nding an unknown force.

• The weight of an object can be considered to be concentrated 

at its centre of gravity.

• If the problem only involves three non-parallel forces,  the 

lines of action of all the forces must meet at a single point in 

order to be in rotational equilibrium.

R

W

P

3 forces must meet at a point if in equilibrium

eb 

(a) plank balances if pivot is in middle

(b) plank rotates clockwise if pivot is to the left

(c) plank rotates anticlockwise if pivot is to the right

W

W

W

There is no moment about

the centre of gravity.

centre of gravity

example 2
A ladder of length 5.0 m leans against a smooth wall (no 

friction) at an angle of 30° to the vertical.

a) Explain why the ladder can only stay in place if there is 

friction between the ground and the ladder.

b) What is the minimum coefcient of static fraction 

between the ladder and the ground for the ladder to 

stay in place?

The reaction from the wall,

Rw and the ladder’s weight

meet at point P. For 

equilibrium the force from

the ground, Rg must also

pass through this point

(for zero torque about P). 

∴ Rg is as shown and has

a horizontal component

(i.e. friction must be acting)  

(a)

h

x

W

wall

ground

Q

Rw

Rg

P

5 m

60°

30°

Equilibrium conditions:-

Ff ≤ µsR

(b)RH

Rg Rv W = Rv

RH

using

= Rw

Rwh = Wxmoments
about Q

(    )
(      )

RH ≤ µsRv∴

µs ≥

µs ≥    =

&
Rw
W

x

h

2.5 cos 60
5.0 sin 60

µs ≥ 0.29∴

3

1

2

3
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newton’s seCond law – definition of moment of inertia

O

xed axis of
rotation

particle

angular
acceleration

rigid body

tangential
acceleration
at

F

α

Newton’s second law as applied to one particle in a rigid body

Newton’s second law applies to every particle that makes up a large 

object and must also apply if the object is undergoing rotational 

motion. In the diagram above, the object is made up of lots of 

small particles each with a mass m F is the tangential component of 

the resultant force that acts on one particle. The other component, 

the radial component, cannot produce angular acceleration so it is 

not included. For this particle we can apply Newton’s second law:

F = m a
t
= mrα

so torque Γ = (mrα)r = mr2 α

Similar equations can be created for all the particles that make 

up the object and summed together:

∑ Γ = ∑ mr2 α

or ∑ Γ
ext

= α∑ mr2 (1)

Note that:

• Newton’s third law applies and, when summing up all the 

torques, the internal torques (which result from the internal 

forces between particles) must sum to zero.  Only the 

external torques are left.

• Every particle in the object has the same angular 

acceleration, α

The moment of inertial, I, of an object about a particular axis is 

dened by the summation below:

I = ∑ mr2

moment of inertia

mass of an individual 

particle in the object

the distance of the particle 

from the axis or rotation

Note that moment of inertia, I, is

• A scalar quantity

• Measured in kg m2 (not kg m 2)

• Dependent on:

◊ The mass of the object

◊ The way this mass is distributed

◊ The axis of rotation being considered.  

Using this denition, equation 1 becomes:

Γ = Iα

resultant external 

torque in N m

moment of inertia in kg m2

angular acceleration in rad s 2

This is Newton’s second law for rotational motion and can be 

compared to F = ma

n’ c  –   

moments of inertia for different oBjeCts

Equations for moments of inertia in different situations do not need to be memorized.

Object Axis of  

rotation

moment of 

inertia

Object Axis of  

rotation

moment of 

inertia

thin ring (simple wheel)

m

r

through centre, 

perpendicular to 

plane

mr2

Sphere

through centre
2
5

mr2

thin ring

m

r

through a 

diameter

1
2

mr2

disc and cylinder (solid ywheel)

m

r

through centre, 

perpendicular to 

plane

1
2

mr2 Rectangular lamina

l

h

Through the 

centre of mass, 

perpendicular to 

the plane of the 

lamina

m( l2 + h2
_

12 )
thin rod, length d

m

d

through centre, 

perpendicular 

to rod

1_
12

md2

example
A torque of 30 N m acts on a wheel with moment of inertia  

600 kg m2. The wheel starts off at rest. 

a) What angular acceleration is produced?

b) The wheel has a radius of 40 cm.  After 1.5 minutes:

i. what is the angular velocity of the wheel?

ii. how fast is a point on the rim moving?

a) Γ = I α ⇒ α = Γ
I

= 30_
600

= 5.0 × 10 2 rad s 2

b) i. ω = αt = 5.0 × 10 2 × 90 = 4.5 rad s 1

ii. v = r ω = 0.4 × 4.5 = 1.8 m s 1
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energy of rotational motion
Energy considerations often provide simple solutions to 

complicated problems. When a torque acts on an object, work is 

done.  In the absence of any resistive torque, the work done on 

the object will be stored as rotational kinetic energy.

axis of rotation

F

P

F

θ

r

Calculation of work done by a torque

In the situation above, a force F is applied and the object 

rotates. As a result, an angular displacement of θ occurs. The 

work done, W, is calculated as shown below:

W = F × (distance along arc) = F × rθ = Γθ

Using Γ = I α we know that W = Iαθ

We can apply the constant angular acceleration equation to 

substitute for αθ:

ω
f

2 = ω
i

2 + 2αθ

∴ W = I( ω
f

2

_
2

- 
ω

i

2

___
2

) = 1
2
Iω

f

2 1
2
Iω

i

2

This means that we have an equation for rotational KE: 

E
K

rot

= 1
2
I ω2

Work done by the torque acting on object = change in 

rotational KE of object

The total KE is equal to the sum of translational KE and the 

rotational KE:

Total KE = translational KE + rotational KE

Total KE = 1
2
Mv2 + 1

2
Iω2

angular momentum
For a single particle

The linear momentum, p, of a particle of mass m which has a 

tangential speed v is m v

The angular momentum, L, is dened as the moment of the 

linear momentum about the axis of rotation

Angular momentum, L = (mv)r = (mrω)r = (mr2)ω

For a larger object

The angular momentum L of an object about an axis of 

rotation is dened as 

Angular momentum, L = ∑(mr2)ω

L = Iω

Note that total angular momentum, L, is:

• a vector (in the same way that a torque is considered to be 

a vector for calculations)

• measured in kg m2 s 1 or N m s

• dependent on all rotations taking place.  For example, the 

total angular momentum of a planet orbiting a star would 

involve:

◊ the spinning of the planet about an axis through the 

planet’s centre of mass and

◊ the orbital angular momentum about an axis through 

the star.

Conservation of angular momentum
In exactly the same way that Newton’s laws can be applied to 

linear motion to derive:

• the concept of the impulse of a force

• the relationship between impulse and change in 

momentum 

• the law of conservation of linear momentum, 

then Newton’s laws can be applied to angular situations  

to derive:

• The concept of the angular impulse: 

Angular impulse is the product of torque and the time for 

which the torque acts:

angular impulse = ΓΔt

If the torque varies with time then the total angular 

impulse given to an object can be estimated from the area 

under the graph showing the variation of torque with 

time. This is analogous to estimating the total impulse 

given to an object as a result of a varying force (see 

page23).

• The relationship between angular impulse and change in 

angular momentum: 

angular impulse applied to an object = change of 

angular momentum experienced by the object

• The law of conservation of angular momentum.

The total angular momentum of a system remains constant 

provided no resultant external torque acts.

Examples:

a) A skater who is spinning on a vertical axis down their 

body can reduce their moment of inertia by drawing in 

their arms. This allows their mass to be redistributed so 

that the mass of the arms is no longer at a signicant 

distance from the axis of rotation thus reducing Σmr2

Extended arms mean

larger radius and smaller

velocity of rotation.

Bringing in her arms

decreases her moment

of inertia and therefore

increases her rotational

velocity.

b) The Earth–Moon system produces tides in the oceans. As 

a result of the relative movement of water, friction exists 

between the oceans and Earth. This provides a torque that 

acts to reduce the Earth’s spin on its own axis and thus 

reduces the Earth’s angular momentum. The conservation 

of angular momentum means that there must be a 

corresponding increase in the orbital angular momentum 

of the Earth–Moon system. As a result, the Earth–Moon 

separation is slowly increasing.

r c
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summary Comparison of equations of linear and rotational motion
Every equation for linear motion has a corresponding angular equivalent:

Linear motion Rotational motion

Physics principles A resultant external force on a point object 

causes acceleration. The value of the 

acceleration is determined by the mass and 

the resultant force.

A resultant external torque on an extended object 

causes rotational acceleration. The value of the 

angular acceleration is determined by the moment 

of inertia and the resultant torque.

Newton’s second law F = m a Γ = I α

Work done W = F s W = Γ θ

Kinetic energy E
K

= 1
2

m v2 E
K

rot

= 1
2

I ω2

Power P = F v P = Γ ω

Momentum p = m v L = I ω

Conservation of momentum The total linear momentum of a system 

remains constant provided no resultant 

external force acts.

The total angular momentum of a system remains 

constant provided no resultant external torque 

acts.

Symbols used Resultant force F

Mass m

Acceleration a

Displacement s

Velocity v

Linear momentum p

Resultant torque Γ

Moment of inertia I

Angular acceleration α

Angular displacement θ

Angular velocity ω

Angular momentum L

proBlem solving and graphiCal work
When analysing any rotational situation, the simplest 

approach is to imagine the equivalent linear situation and use 

the appropriate equivalent relationships.

a) Graph of angular displacement vs time

This graph is equivalent to a graph of linear displacement vs 

time. In the linear situation, the area under the graph does 

not represent any useful quantity and the gradient of the line 

at any instant is equal to the instantaneous velocity (see page 

10). Thus the gradient of an angular displacement vs 

time graph gives the instantaneous angular velocity.

b) Graph of angular velocity vs time

This graph is equivalent to a graph of linear velocity vs 

time. In the linear situation, the area under the graph 

represents the distance gone and the gradient of the line at 

any instant is equal to the instantaneous acceleration (see 

page 10). Thus the area under an angular velocity vs 

time graph gives the total angular displacement and 

the gradient of an angular velocity vs time graph 

gives the instantaneous angular acceleration.

c) Graph of torque vs time

This graph is equivalent to a graph of force vs time. In 

the linear situation, the area under the graph represents 

the total impulse given to the object which is equal to the 

change of momentum of the object (see page 23). Thus 

the area under the torque vs time graph represents 

the total angular impulse given to the object which 

is equal to the change of angular momentum.

example
A solid cylinder, initially at rest, rolls down a 2.0 m long slope 

of angle 30° as shown in the diagram below: 

2.0 m

30°

The mass of the cylinder is m and the radius of the cylinder is R. 

Calculate the velocity of the cylinder at the bottom of the slope.

Answer: 

Vertical height fallen by cylinder = 2.0 sin30 = 1.0 m

PE lost = mgh

KE gained = 1
2

mv2 + 1
2

Iω2

but I = 1
2

mR2 (cylinder) see page 156

and ω = v
R

⇒ KE gained = 1
2

mv2 + 1
2

mR2
_

2
v2
_
R2

= 1
2

mv2 + 1
4

mv2

= 3
4

mv2

Conservation of energy

⇒ mgh = 3
4

mv2

∴ v = √
____

4
gh_
3

= √
___________
4 × 9.8 × 1.0__

3

= 3.61 m s 1

s  b
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definitions
Historically, the study of the behaviour of ideal gases led to some very fundamental concepts that are applicable to many other 

situations. These laws, otherwise known as the laws of thermodynamics, provide the modern physicist with a set of very 

powerful intellectual tools. 

The terms used need to be explained. 

Thermodynamic 

system

Most of the time when studying the behaviour of an ideal gas in particular situations, we focus on the

macroscopic behaviour of the gas as a whole. In terms of work and energy, the gas can gain or lose 

thermal energy and it can do work or work can be done on it. In this context, the gas can be seen as a 

thermodynamic system

The 

surroundings

If we are focusing our study on the behaviour of an ideal gas, then everything else can be called 

its surroundings. For example the expansion of a gas means that work is done by the gas on the 

surroundings (see below).

Heat Q In this context heat refers to the transfer  

of a quantity of thermal energy between  

the system and its surroundings.  

This transfer must be as a result of a  

temperature difference.

Work W In this context, work refers to the macroscopic transfer of energy. For example

1. work done = force × distance

compression

F

F

When a gas is compressed, work is done on the gas 

When a gas is compressed, the surroundings do 

work on it. When a gas expands it does work on 

the surroundings.

2. work done = potential difference × current × time

Internal energy 

U (∆U = change 

in internal 

energy)

The internal energy can be thought of as the energy held within a system. It is the sum of the PE due to 

the intermolecular forces and the kinetic energy due to the random motion of the molecules. See  

page 26. 

This is different to the total energy of  

the system, which would also include  

the overall motion of the system and  

any PE due to external forces.

In thermodynamics, it is the changes  

in internal energy that are being  

considered. If the internal energy of  

a gas is increased, then its temperature  

must increase. A change of phase  

(e.g. liquid → gas) also involves a  

change of internal energy.

Internal energy 

of an ideal 

monatomic gas

The internal energy of an ideal gas depends only on temperature.  When the temperature of an ideal 

gas changes from T to (T + ΔT) its internal energy changes from U to (U + ΔU). The same ΔU always 

produces the same ΔT. Since the temperature is related to the average kinetic energy per molecule (see 

page 30), E
K

=
3
2

k
B
T = 3

2
R
N

A

T, the internal energy U, is the sum of the total random kinetic energies of the 

molecules:

U = nN
A

E
K

=
3
2

nRT [n = number of moles; N
A
 = Avogadro’s constant]

The total energy of a system is not the same as 

its internal energy

system
with

internal
energy U

v
velocity (system also has kinetic energy)

height (system also has 
gravitational potential energy)

h

tc   cc

This is just another 

example of work being 

done on the gas.

heater

power supply

HOT

HOT

thermal energy ow

thermal energy ow

thermal 
energy 
ow

COLDHOT
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work done during expansion 

at Constant pressure
Whenever a gas expands, it is doing 

work on its surroundings. If the pressure 

of the gas is changing all the time, then 

calculating the amount of work done 

is complex. This is because we cannot 

assume a constant force in the equation 

of work done (work done = force 

× distance). If the pressure changes 

then the force must also change. If the 

pressure is constant then the force is 

constant and we can calculate the  

work done.

constant

pressure p

F

F

∆x

Work done W = force × distance

= F∆x

Since pressure =
force_
area

F = pA

therefore

W = pA∆x

but A∆x = ∆V

so work done = p∆V 

So if a gas increases its volume (∆V  

is positive) then the gas does work (W is 

positive)

w  b   

p V diagrams and work done
It is often useful to represent the changes that happen to a gas during a 

thermodynamic process on a pV diagram. An important reason for choosing to do this 

is that the area under the graph represents the work done. The reasons for this are 

shown below.

area under graph
=work done in expanding 

          from state A to state B

p
re

s
s

u
re

 p

p

volume V

A B area of strip
= p∆V
=work done

          in expansion

∆V

This turns out to be generally true for any thermodynamic process.

p
re

ss
u

re
 p

volume V

A

B

C

work done by gas 
expanding from
state A to state B 
to state C

A

D

C

work done by
atmosphere as
gas contracts 
from state C to
state D to state A

p
re

ss
u

re
 p

volume V
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t    c

first law of thermodynamiCs
There are three fundamental laws of thermodynamics. The 

rst law is simply a statement of the principle of energy 

conservation as applied to the system. If an amount of thermal 

energy Q is given to a system, then one of two things must 

happen (or a combination of both). The system can increase its 

internal energy ∆U or it can do work W

As energy is conserved

Q = ∆U +W

It is important to remember what the signs of these symbols 

mean. They are all taken from the system’s ‘point of view’.

Q If this is positive, then thermal energy is going into the 

system. 

If it is negative, then thermal energy is going out of the 

system.

∆U If this is positive, then the internal energy of the system 

is increasing. (The temperature of the gas is increasing.) 

If it is negative, the internal energy of the system is 

decreasing.(The temperature of the gas is decreasing.)

W If this is positive, then the system is doing work on 

the surroundings.(The gas is expanding.) 

If it is negative, the surroundings are doing work on 

the system. (The gas is contracting.)

example
A monatomic gas doubles its volume as a result of an 

adiabatic expansion. What is the change in pressure?

p
1
V

1

5
3 = p

2
V

2

5
3

p
2

p
1

= (V1_
V

2
)

5
3

= 0.5
5
3

= 0.31

∴ nal pressure = 31% of initial pressure

ideal gas proCesses
A gas can undergo any number of different types of change or process. Four important processes are considered below. In each case 

the changes can be represented on a pressure–volume diagram and the rst law of thermodynamics must apply. To be precise, these 

diagrams represent a type of process called a reversible process.

1. Isochoric 

(isovolumetric)

In an isochoric 

process, also called an 

isovolumetric process, 

the gas has a constant 

volume. The diagram 

below shows an 

isochoric decrease in 

pressure.

p
re

s
s

u
re

 p

volume V

A

B

Isochoric (volumetric) 

change

V = constant, or
p

T
= constant

Q negative 

∆U negative (T↓)

W zero 

2. Isobaric

In an isobaric process 

the gas has a constant 

pressure. The diagram 

below shows an isobaric 

expansion

A B

p
re

s
s

u
re

 p

volume V

Isobaric change

p = constant, or   
V

T
= constant

Q positive

∆U positive (T↑)

W positive

3. Isothermal

In an isothermal process 

the gas has a constant 

temperature. The 

diagram below shows an 

isothermal expansion

A

B

p
re

s
s

u
re

 p

volume V

Isothermal change

T = constant, or  

pV = constant

Q positive

∆U zero

W positive

4. Adiabatic

In an adiabatic process 

there is no thermal 

energy transfer between 

the gas and the 

surroundings. This means 

that if the gas does work it 

must result in a decrease 

in internal energy. A rapid 

compression or expansion 

is approximately 

adiabatic. This is because 

done quickly there is not 

sufcient time for thermal 

energy to be exchanged 

with the surroundings. 

The diagram below shows 

an adiabatic expansion

A

B

p
re

s
s

u
re

 p

volume V

Adiabatic change

Q zero

∆U negative (T↓)

W positive

For a monatomic gas, the 

equation for an adiabatic 

process is  

pV
5
3 = constant
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examples
The rst and second laws of thermodynamics both must apply 

to all situations. Local decreases of entropy are possible so 

long as elsewhere there is a corresponding increase.

1. A refrigerator is an example of a heat pump. 

source of work 
is the electric
energy supply

thermal energy taken from
ice box and ejected to
surroundings

A refrigerator

2. It should be possible to design a 

theoretical system for propelling a 

boat based around a heat engine. The 

atmosphere could be used as the hot 

reservoir and cold water from the sea 

could be used as the cold reservoir. 

The movement of the boat through 

the water would be the work done. 

This is possible BUT it cannot continue 

to work for ever. The sea would be 

warmed and the atmosphere would 

be cooled and eventually there would 

be no temperature difference.

3. Water freezes at 0 °C because this is the temperature at 

which the entropy increase of the surroundings (when 

receiving the latent heat) equals the entropy decrease of 

the water molecules becoming more ordered. It would not 

freeze at a higher temperature because this would mean 

that the overall entropy of the system would decrease.

sc   c  

seCond law of thermodynamiCs
Historically the second law of thermodynamics has been 

stated in many different ways. All of these versions can be 

shown to be equivalent to one another. 

In principle there is nothing to stop the complete conversion 

of thermal energy into useful work. In practice, a gas can not 

continue to expand forever – the apparatus sets a physical 

limit. Thus the continuous conversion of thermal energy 

into work requires a cyclical process – a heat engine.

Thot
Qhot Qcold

Tcold

Carnot showed
that Qhot>W

In other words there 
must be thermal energy 
‘wasted’ to the cold reservoir.

W

This realization leads to possibly the simplest formulation 

of the second law of thermodynamics (the Kelvin–Planck 

formulation). 

No heat engine, operating in a cycle, can take in heat 

from its surroundings and totally convert it into work.

Other possible formulations include the following:

No heat pump can transfer thermal energy from a 

low-temperature reservoir to a high-temperature 

reservoir without work being done on it (Clausius).

Heat ows from hot objects to cold objects.

The concept of entropy leads to one nal version of the 

second law.

The entropy of the Universe can never decrease.

entropy and energy degradation
Entropy is a property that expresses the disorder in the 

system.

The details are not important but the entropy S of a system 

is linked to the number of possible arrangements W of the 

system. [S = k
B
 ln(W)]

Because molecules are in random motion, one would expect 

roughly equal numbers of gas molecules in each side of a 

container.

An arrangement 
like this 
is much 
more likely
than one like 

The number of ways of arranging the molecules to get the 

set-up on the right is greater than the number of ways of 

arranging the molecules to get the set-up on the left. This 

means that the entropy of the system on the right is greater 

than the entropy of the system on the left. 

In any random process the amount of disorder will tend 

to increase. In other words, the total entropy will always 

increase. The entropy change ∆S is linked to the thermal 

energy change ∆Q and the temperature T. (∆S =
∆Q___
T

)

Thot

Thot

Tcold
∆Q

∆Q

thermal energy ow

decrease of entropy = 
Tcold

∆Q
increase of entropy = 

When thermal energy ows from a hot object to a colder 

object, overall the total entropy has increased.

In many situations the idea of energy degradation is a useful 

concept. The more energy is shared out, the more degraded 

it becomes – it is harder to put it to use. For example, the 

internal energy that is ‘locked’ up in oil can be released when 

the oil is burned. In the end, all the energy released will be in 

the form of thermal energy – shared among many molecules. 

It is not feasible to get it back.

increasing temperature of surroundings

-2 °C 0 °C 2 °C

<

ICE
since

ICE/WATER 
MIX

since

WATER
since

entropy 
decrease

of ice
formation

entropy 
increase 

of
surroundings

>

entropy 
decrease

of ice 
formation

entropy 
increase 

of
surroundings

=

entropy 
decrease

of ice
formation

entropy 
increase 

of
surroundings
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heat engines
A central concept in the study of thermodynamics is the heat 

engine. A heat engine is any device that uses a source of 

thermal energy in order to do work. It converts heat into work. 

The internal combustion engine in a car and the turbines that 

are used to generate electrical energy in a power station are 

both examples of heat engines. A block diagram representing a 

generalized heat engine is shown below.

Thot

HOT
reservoir

COLD
reservoir

Tcold
thermal
energy
Qhot

thermal
energy
Qcold

work
doneW

ENGINE

Heat engine

In this context, the word reservoir is used to imply a constant 

temperature source (or sink) of thermal energy. Thermal energy can 

be taken from the hot reservoir without causing the temperature of 

the hot reservoir to change. Similarly thermal energy can be given to 

the cold reservoir without increasing its temperature.

An ideal gas can be used as a heat engine. The pV diagram right 

represents a simple example. The four-stage cycle returns the gas 

to its starting conditions, but the gas has done work. The area 

enclosed by the cycle represents the amount of work done. 

In order to do this, some thermal energy must have been 

taken from a hot reservoir (during the isovolumetric increase 

in pressure and the isobaric expansion). A different amount 

of thermal energy must have been ejected to a cold reservoir 

(during the isovolumetric decrease in pressure and the isobaric 

compression).

isovolumetric 
decrease in 
pressure

total work 
done by
the gasp

re
ss

u
re

 p

isovolumetric 
increase in 
pressure

volume V

isobaric compression

isobaric expansion
A B

C D

The thermal efciency of a heat engine is dened as 

η =
work done____

(thermal energy taken from hot reservoir)

This is equivalent to 

η =
rate of doing work____

(thermal power taken from hot reservoir)

η =
useful work done__

energy input

The cycle of changes that results in a heat engine with the 

maximum possible efciency is called the Carnot cycle

heat pumps
A heat pump is a heat engine being run in reverse. A 

heat pump causes thermal energy to be moved from a cold 

reservoir to a hot reservoir. In order for this to be achieved, 

mechanical work must be done.

Thot

HOT
reservoir

COLD
reservoir

Tcold

thermal
energy
Qhot

thermal
energy
Qcold

input
work ∆W

HEAT
PUMP

Heat pump

Once again an ideal gas can be used as a heat pump. The 

thermodynamic processes can be exactly the same ones as were 

used in the heat engine, but the processes are all opposite. This 

time an anticlockwise circuit will represent the cycle of processes. 

p
re

s
s

u
re

 p

isobaric expansion

isobaric compression

isovolumetric 

decrease in 

pressure

isovolumetric 

increase in 

pressure

A D

B C

total work 

done on

the gas

volume V

Carnot CyCles and Carnot theorem
The Carnot cycle represents the cycle of processes for a 

theoretical heat engine with the maximum possible efciency. 

Such an idealized engine is called a Carnot engine

Qhot

Qcold

thermal energy 

given out

thermal energy taken in

area = work done

by gas during

Carnot cycle

A

D

B

C

p
re

ss
u

re
 p

V

Carnot cycle

It consists of an ideal gas undergoing the following processes.

• Isothermal expansion (A → B)

• Adiabatic expansion (B → C)

• Isothermal compression (C → D)

• Adiabatic compression (D → A)

The temperatures of the hot and cold reservoirs x the 

maximum possible efciency that can be achieved. 

The efciency of a Carnot engine can be shown to be

η
Carnot

= 1 
T

cold_
T

hot

  (where T is in kelvin)

An engine operates at 300 °C and ejects heat to the surroundings 

at 20 °C. The maximum possible theoretical efciency is

η
Carnot

= 1 
293_
573

= 0.49 = 49%

h    
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definitions of density and pressure

The symbol representing density is the Greek letter rho, ρ. The 

average density of a substance is dened by the following equation:

ρ =
m_
V

average density mass

volume

• Density is a scalar quantity.

• The SI units of density are kg m 3

• Densities can also be quoted in g cm 3 (see conversion factor 

below)

• The density of water is 1 g cm 3 = 1,000 kg m 3

Pressure at any point in a uid (a gas or a liquid) is dened 

interms of the force, ΔF, that acts normally (at 90°) to a 

smallarea, ΔA, that contains the point.

p =
ΔF_
ΔA

pressure normal force

area

• Pressure is a scalar quantity – the force has a direction but 

the pressure does not. Pressure acts equally in all directions.

• The SI unit of pressure is Nm 2 or pascals (Pa). 1Pa = 1Nm 2

• Atmospheric pressure ≈ 105 Pa

• Absolute pressure is the actual pressure at a point in a 

uid. Pressure gauges often record the difference between 

absolute pressure and atmospheric pressure. Thus if a 

difference pressure gauge gives a reading of 2 × 105 Pa for a 

gas, the absolute pressure of the gas is 3 × 105 Pa.

variation of fluid pressure

The pressure in a uid increases with depth. If two points are 

separated by a vertical distance, d, in a uid of constant density, 

ρ
f
, then the pressure difference, Δp, between these two points is:

∆p = ρ
f

pressure difference due to depth

density of uid gravitational eld strength

depth

The total pressure at a given depth in a liquid is the addition 

of the pressure acting at the surface (atmospheric pressure) 

and the additional pressure due to the depth:

P = P
0 
+ ρ

f

depth

Atmospheric pressure density of uid

Note that:

• Pressure can be expressed in terms of the equivalent 

depth (or head) in a known liquid. Atmospheric pressure 

is approximately the same as exerted by a 760 mm high 

column of mercury (Hg) or a 10 m column of water.

• As pressure is dependent on depth, the pressures at two 

points that are at the same horizontal level in the same 

liquid must be the same provided they are connected by 

that liquid and the liquid is static.

hexcess gas
pressure P

A B

atmospheric pressure

the water column exerts
a pressure at B equal to
the excess pressure of
the gas supply: P= hρg

• The pressure is independent of the cross-sectional area – 

this means that liquids will always nd their own level.

BuoyanCy and arChimedes’ prinCiple

Archimedes’ principle states that when a body is immersed 

in a uid, it experiences a buoyancy upthrust equal in 

magnitude to the weight of the uid displaced. B = ρ
f
V

f
g

22N

(a)

12N

volume of
uid displaced

(w = 10N)

density
of uid

W

17N

uid displaced
(w = 5N)

W W

B1 B2

A consequence of this 

principle is that a oating 

object displaces its own 

weight of uid.

weight of uid displaced

= total weight of duck

f  HL

pasCal’s prinCiple

Pascal’s principle states that the pressure applied to an 

enclosed liquid is transmitted to every part of the liquid, 

whatever the shape it takes. This principle is central to the 

design of many hydraulic systems and is different to how 

solids respond to forces.

When a solid object (e.g. an incompressible stick) is pushed at 

one end and its other end is held in place, then the same force 

will be exerted on the restraining object.

Incompressible solids transmit forces whereas incompressible 

liquids transmit pressures.

piston of 
area A1

hydraulic liquid

piston of area A2

load platform

applied force F
(eort)load = F ×

A2
A1

hydrostatiC equiliBrium

A uid is in hydrostatic equilibrium when it is at rest. This 

happens when all the forces on a given volume of uid are 

balanced. Typically external forces (e.g. gravity) are balanced 

by a pressure gradient across the volume of uid (pressure 

increases with depth – see above). 

volume of uid

downward force due to

pressure from uid above

weight of uid

contained in volume
upward force due to

pressure from uid below

W
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the ideal fluid
In most real situations, uid ow is extremely complicated. The 

following properties dene an ideal uid that can be used to 

create a simple model. This simple model can be later rened to 

be more realistic.

An ideal uid:

• Is incompressible – thus its density will be constant.

• Is non-viscous – as a result of uid ow, no energy gets 

converted into thermal energy. See page 167 for the denition 

of the viscosity of a real uid.

• Involves a steady ow (as opposed to a turbulent, or chaotic, 

ow) of uid. Under these conditions the ow is laminar (see 

box below). See page 167 for an analysis of turbulent ow.

• Does not have angular momentum – it does not rotate.

the Bernoulli effeCt
When a uid ows into a narrow section of a pipe:

• The uid must end up moving at a higher speed (continuity 

equation).   

• This means the uid must have been accelerated 

forwards.  

higher pressure

lower speed

higher pressure

lower speed

lower pressure

higher speed

• This means there must be a pressure difference forwards with 

a lower pressure in the narrow section and a higher pressure 

in the wider section.  

Thus an increase in uid speed must be associated with a 

decrease in uid pressure. This is the Bernoulli effect – the 

greater the speed, the lower the pressure and vice versa. 

the Bernoulli equation
The Bernoulli equation results from a consideration of the 

work done and the conservation of energy when an ideal uid 

changes:

• its speed (as a result of a change in cross-sectional area) 

• its vertical height as a result of work done by the uid pressure.

The equation identies a quantity that is always constant 

along any given streamline: 

density 

of uid

density 

of uid

gravitational 

eld strength

vertical heightspeed of uid 

particles uid pressure  

1_
2

ρv2 + ρgz + p = constant

Note that:

• The rst term (1
2

ρv2 ), can be thought of as the dynamic pressure. 

• The last two terms (ρgz + p), can be thought of as the static 

pressure.

• Each term in the equation has several possible units:  

N m 2, Pa, J m 3.  

• The last of the above units leads to a new interpretation for 

the Bernoulli equation:

KE 

per unit 

volume

gravitational PE 

per unit 

volume

+ pressure = constant+

laminar flow, streamlines and the  

Continuity equation
When the ow of a liquid is steady or laminar, different parts 

of the uid can have different instantaneous velocities.  The 

ow is said to be laminar if every particle that passes through 

a given point has the same velocity whenever the observation 

is made.  The opposite of laminar ow, turbulent ow, takes 

place when the particles that pass through a given point have a 

wide variation of velocities depending on the instant when the 

observation is made (see page 167).  

A streamline is the path taken by a particle in the uid and 

laminar ow means that all particles that pass through a 

given point in the uid must follow the same streamline.  The 

direction of the tangent to a streamline gives the direction of 

the instantaneous velocity that the particles of the uid have at 

that point. No uid ever crosses a streamline.  Thus a collection 

of streamlines can together dene a tube of ow.  This is 

tubular region of uid where uid only enters and leaves the 

tube through its ends and never through its sides.

speed ν1

speed ν2

area A2
density ρ

area A1
density ρ1 boundary

(streamlines)

In a time Δt, the mass, m
1
, entering the cross-section A

1
 is 

m
1 
= ρ

1
A

1
v

1
∆t

Similarly the mass, m
2
, leaving the cross-section A

2
 is

m
2 
= ρ

2
A

2
v

2
∆t

Conservation of mass applies to this tube of ow, so

ρ
1
A

1
v

1 
= ρ

2
A

2
v

2

This is an ideal uid and thus incompressible meaning ρ
1
= ρ

2
, so

A
1
v

1 
= A

2
v

2
 or Av = constant

This is the continuity equation

f   – B cHL
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appliCations of the Bernoulli equation
a) Flow out of a container

h

A

B
arbitrary zero

streamlineliquid

density ρ

To calculate the speed of uid owing out of a container, we 

can apply Bernoulli’s equation to the streamline shown above.

At A, p = atmospheric and v = zero

At B, p = atmospheric and v = ?

1
2

ρv2 + ρgz + p = constant

∴ 0 + hρg + p = 1
2

ρv2 + 0 + p

v = √
___
2gh

b) Venturi tubes

A Venturi meter allows the rate of ow of a uid to be 

calculated from a measurement of pressure difference 

between two different cross-sectional areas of a pipe.

h

area A constriction
of area a

manometer liquid
(e.g. mercury),
density ρ2

ow of (e.g.) water,
density ρ1

A

B

ν

to metal end

• The pressure difference between A and B can be 

calculated by taking readings of Δh and ρ
2
 from the 

attached manometer:

P
A 

P
B 
= ∆hρ

2
g

• This value and measurements of A, a and ρ
1
 allows the 

uid speed at A to be calculated by using Bernoulli’s 

equation and the equation of continuity

v = √2∆hρ
2
g________

[ρ (A
a )

2
 1 ]

• The rate of ow of uid through the pipe is equal to A × v

c) Fragrance spray

below-pressure zone

a.  Squeezing
      bulb
      forces air
      through
      tube

b.  Constriction in tube causes low pressure
      region as air travels faster in this section

c.  Liquid is drawn up tube
      by pressure dierence
      and forms little droplets
      as it enters the air jet

squeeze-
bulb

d) Pitot tube to determine the speed of a plane

A pitot tube is attached facing forward on a plane. It has 

two separate tubes: 

small static
pressure openings

impact
opening static

pressure
tube

total
pressure
tube

direction
of airow

• The front hole (impact opening) is placed in the 

airstream and measures the total pressure (sometimes 

called the stagnation pressure), P
T
. 

• The side hole(s) measures the static pressure, P . 

• The difference between P
T
 and P , is the dynamic 

pressure. The Bernoulli equation can be used to calculate 

airspeed:

P
T 

P
s 
= 1

2
ρv2

v = √
________
2(P

T 
P )

_
ρ

e) Aerofoil (aka airfoil)

air ow

aerofoil

pressure P2

pressure P1

dynamic lift F

ν1

ν2

Note that:

• Streamlines closer together above the aerofoil imply a 

decrease in cross-sectional area of equivalent tubes of ow 

above the aerofoil. 

• Decrease in cross-sectional area of tube of ow implies 

increased velocity of ow above the aerofoil (equation of 

continuity). v
1 
> v

2

• Since v
1
> v

2
P

1
< P

2

• Bernoulli equation can be used to calculate the pressure 

different (height difference not relevant) which can support 

the weight of the aeroplane.

• When angle of attack is too great, the ow over the upper 

surface can become turbulent. This reduces the pressure 

difference and leads to the plane ‘stalling’.

B – HL
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definition of visCosity
An ideal uid does not resist the relative motion between 

different layers of uid. As a result there is no conversion of work 

into thermal energy during laminar ow and no external forces 

are needed to maintain a steady rate of ow. Ideal uids are non-

viscous whereas real uids are viscous. In a viscous uid, a steady 

external force is needed to maintain a steady rate of ow (no 

acceleration). Viscosity is an internal friction between different 

layers of a uid which are moving with different velocities.

The denition of the viscosity of a uid, η, (Greek letter Nu) is 

in terms of two new quantities, the tangential stress, τ, and 

the velocity gradient, Δv

Δy
 (see RH side).

The coefcient of viscosity η is dened as: 

η =
tangential stress__
velocity gradient

=
F⁄A_

Δv⁄Δy

• The units of η are N s m 2 or kg m 1 s 1 or Pa s

• Typical values at room temperature:

◊ Water: 1.0 × 10 3 Pa s

◊ Thick syrup: 1.0 × 102 Pa s

• Viscosity is very sensitive to changes of temperature.

For a class of uid, called Newtonian uids, experimental 

measurements show that tangential stress is proportional to velocity 

gradient (e.g. many pure liquids). For these uids the coefcient of 

viscosity is constant provided external conditions remain constant.

A) Tangential stress

relative

velocity ∆v

retarding force
accelerating force

area of contact A

-F

F

The tangential stress is dened as:

τ =
F

A

• Units of tangential stress are N m 2 or Pa

B) Velocity gradient

y

(v + v)
v

y

v

velocity

The velocity gradient is dened as: 

velocity gradient =
Δv_
Δy

• Units of velocity gradient are s 1

stokes’ law
Stokes’ law predicts the viscous drag force F

D
 that acts on a 

perfect sphere when it moves through a uid:

FF
v

r

driving
force

equal opposing
viscous drag

innite expanse
of uid η

uid at this point moves
with body (boundary layer)

sphere has
uniform
velocity

F
D 
= 6

Drag force acting on sphere in N

radius of sphere in m

viscosity of uid in Pa s

velocity of sphere in m s 1

Note Stokes’ law assumes that:

• The speed of the sphere is small so that:

◊ the ow of uid past the sphere is streamlined

◊ there is no slipping between the uid and the sphere

• The uid is innite in volume.  Real spheres falling through 

columns of uid can be affected by the proximity of the 

walls of the container.

• The size of the particles of the uid is very much smaller 

than the size of the sphere.

The forces on a sphere falling through a uid at terminal 

velocity are as shown below:

v

W

D

sphere

velocity

uid upthrust

sphere

density ρ

uid

density σ
pull of

Earth

viscous drag

r

At terminal velocity v
t
, 

W = U + F
D

F
D 
= U W

6πηrv
t 
=

4
3

πr3(ρ σ)g

∴ v
t 
=

2r2(ρ - σ)g__
9η

turBulent flow – the reynolds numBer
Streamline ow only occurs at low uid ow rates.  At high 

ow rates the ow becomes turbulent:

turbulentlaminar

It is extremely difcult to predict the exact conditions when 

uid ow becomes turbulent.  When considering uid ow 

down a pipe, a useful number to consider is the Reynolds 

number, R, which is dened as:

R = 
vrρ_
η

Reynolds 

number

viscosity of uid

speed of 

bulk ow radius of pipe

density of uid

Note that:

• The Reynolds number does not have any units – it is just a ratio.

• Experimentally, uid ow is often laminar when R < 1000 and 

turbulent when R > 2000 but precise predictions are difcult.

vcHL
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damping
Damping involves a frictional force that is always in the 

opposite direction to the direction of motion of an oscillating 

particle. As the particle oscillates, it does work against this 

resistive (or dissipative) force and so the particle loses  

energy. As the total energy of the particle is proportional to the 

(amplitude)2 of the SHM, the amplitude decreases exponentially 

with time.

time, tπ

ω

2π
ω

4π
ω

d
is

p
la

ce
m

e
n

t,
x

exponential envelope

The above example shows the effect of light damping (the 

system is said to be underdamped) where the resistive force 

is small so a small fraction of the total energy is removed each 

cycle. The time period of the oscillations is not affected and the 

oscillations continue for a signicant number of cycles. The time 

taken for the oscillations to ‘die out’ can be long. 

Heavy damping or overdamping involves large resistive 

forces (e.g. the SHM taking place in a viscous liquid) and can 

completely prevent the oscillations from taking place. The time 

taken for the particle to return to zero displacement can again 

be long. 

Critical damping involves an intermediate value for resistive 

force such that the time taken for the particle to return to zero 

displacement is a minimum. Effectively there is no ‘overshoot’. 

Examples of critically damped systems include electric meters 

with moving pointers and door closing mechanisms.

overdamped

overshoot

underdamped

critical
damping

time

d
is
p
la
ce

m
e
n
t

natural frequenCy and resonanCe
If a system is temporarily displaced from its equilibrium 

position, the system will oscillate as a result. This oscillation will 

be at the natural frequency of vibration of the system. For 

example, if you tap the rim of a wine glass with a knife, it will 

oscillate and you can hear a note for a short while. Complex 

systems tend to have many possible modes of vibration each 

with its own natural frequency.

It is also possible to force a system to oscillate at any frequency 

that we choose by subjecting it to a changing force that varies 

with the chosen frequency. This periodic driving force must be 

provided from outside the system. When this driving frequency

is rst applied, a combination of natural and forced oscillations 

take place which produces complex transient oscillations. Once 

the amplitude of the transient oscillations ‘die down’, a steady 

condition is achieved in which:

• The system oscillates at the driving frequency.

• The amplitude of the forced oscillations is xed. Each cycle 

energy is dissipated as a result of damping and the driving 

force does work on the system. The overall result is that the 

energy of the system remains constant.

• The amplitude of the forced oscillations depends on:

◊ the comparative values of the natural frequency and the 

driving frequency

◊ the amount of damping present in the system.

light damping

increased damping

natural frequency, fnatural

driving frequency, fdriving

a
m

p
lit

u
d

e
 o

f o
s

ci
lla

ti
o

n

heavy damping

Resonance occurs when a system is subject to an oscillating 

force at exactly the same frequency as the natural frequency of 

oscillation of the system.

q faCtor and damping
The degree of damping is measured by a quantity called the 

quality factor or Q factor.  It is a ratio (no units) and the 

denition is:

Q = 2π

energy stored__
energy lost per cycle 

Since the energy stored is proportional to the square of 

amplitude of the oscillation, measurements of decreasing 

amplitude with time can be used to calculate the Q factor.  The 

Q factor is approximately equal to the number of oscillations 

that are completed before damping stops the oscillation.

Typical orders of magnitude for different Q-factors:

Car suspension: 1

Simple pendulum: 103

Guitar string: 103

Excited atom: 107

When a system is in resonance and its amplitude is constant, 

the energy provided by the driving frequency during one cycle 

is all used to overcome the resistive forces that cause damping. 

In this situation, the Q factor can be calculated as:

Q = 2π × resonant frequency ×
energy stored__

power loss

fc c  c (1)HL
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phase of forCed osCillations 
After transient oscillations have died down, the frequency of the forced oscillations equals the driving frequency. The phase 

relationship between these two oscillations is complex and depends on how close the driven system is to resonance:

0

in phase

heavy damping

light damping

natural forcing
f/Hz

driven vibration

   period behind

phase lag

φ/rad

1
2

π

π

2
driven vibration

   period behind1
4

examples of resonanCe

Comment

Vibrations in machinery When in operation, the moving parts of machinery provide regular driving forces on the 

other sections of the machinery. If the driving frequency is equal to the natural frequency, the 

amplitude of a particular vibration may get dangerously high. e.g. at a particular engine speed 

a truck’s rear view mirror can be seen to vibrate.

Quartz oscillators A quartz crystal feels a force if placed in an electric eld. When the eld is removed, the 

crystal will oscillate. Appropriate electronics are added to generate an oscillating voltage from 

the mechanical movements of the crystal and this is used to drive the crystal at its own natural 

frequency. These devices provide accurate clocks for microprocessor systems.

Microwave generator Microwave ovens produce electromagnetic waves at a known frequency. The changing 

electric eld is a driving force that causes all charges to oscillate. The driving frequency of the 

microwaves provides energy, which means that water molecules in particular are provided 

with kinetic energy – i.e. the temperature is increased.

Radio receivers Electrical circuits can be designed (using capacitors, resistors and inductors) that have their 

own natural frequency of electrical oscillations. The free charges (electrons) in an aerial will 

feel a driving force as a result of the frequency of the radio waves that it receives. Adjusting 

the components of the connected circuit allows its natural frequency to be adjusted to equal 

the driving frequency provided by a particular radio station. When the driving frequency 

equals the circuit’s natural frequency, the electrical oscillations will increase in amplitude and 

the chosen radio station’s signal will dominate the other stations.

Musical instruments Many musical instruments produce their sounds by arranging for a column of air or a string to 

be driven at its natural frequency which causes the amplitude of the oscillations to increase.

Greenhouse effect The natural frequency of oscillation of the molecules of greenhouse gases is in the infra-red 

region. Radiation emitted from the Earth can be readily absorbed by the greenhouse gases in 

the atmosphere. See page 92 for more details.
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iB q –  B –  c
1. A sphere of mass m and radius r rolls, without slipping, from 

rest down an inclined plane.  When it reaches the base of the 

plane, it has fallen a vertical distance h. Show that the speed 

of the sphere, v, when it arrives at the base of the incline is 

given by:

v = √
_____
10gh_

7
[4]

2. A ywheel of moment of inertia 0.75 kg m2 is accelerated 

uniformly from rest to an angular speed of 8.2 rad s 1 in 6.5 s.

a) Calculate the resultant torque acting on the ywheel 

during this time. [2]

b) Calculate the rotational kinetic energy of the ywheel 

when it rotates at 8.2 rad s 1 [2]

c) The radius of the ywheel is 15 cm.  A breaking force 

applied on the circumference and brings it to rest from 

an angular speed of 8.2 rad s 1  in exactly 2 revolutions. 

Calculate the value of the breaking force. [2]

3. A xed mass of a gas undergoes various changes of 

temperature, pressure and volume such that it is taken round 

the p V cycle shown in the diagram below.

2.0

1.0

1.0

Z 

X 

Y 

2.0 3.0 4.0 5.0 volume/10 3 m3

p
re
s
s
u
re
/1
0
5
P
a

The following sequence of processes takes place during 

the cycle.

X → Y the gas expands at constant temperature and the gas 

absorbs energy from a reservoir and does 450 J of 

work.

Y → Z the gas is compressed and 800 J of thermal energy is 

transferred from the gas to a reservoir.

Z → X the gas returns to its initial stage by absorbing energy 

from a reservoir.

a) Is there a change in internal energy of the gas during  

the processes X → Y? Explain. [2]

b) Is the energy absorbed by the gas during the process  

X → Y less than, equal to or more than 450 J? Explain. [2]

c) Use the graph to determine the work done on the gas 

during the process Y → Z. [3]

d) What is the change in internal energy of the gas  

during the process Y → Z? [2]

e) How much thermal energy is absorbed by the gas  

during the process Z → X? Explain your answer. [2]

f) What quantity is represented by the area enclosed by  

the graph? Estimate its value. [2]

g) The overall efciency of a heat engine is dened as 

Efciency =
net work done by the gas during a cycle____

total energy absorbed during a cycle

If this p V cycle represents the cycle for a particular heat 

engine determine the efciency of the heat engine. [2]

4. In a diesel engine, air is initially at a pressure of 1 × 105 Pa 

and a temperature of 27 °C. The air undergoes the cycle of 

changes listed below. At the end of the cycle, the air is back at 

its starting conditions.

1 An adiabatic compression to 1/20th of its original volume.

2 A brief isobaric expansion to 1/10th of its original volume.

3 An adiabatic expansion back to its original volume.

4 A cooling down at constant volume.

a) Sketch, with labels, the cycle of changes that the gas 

undergoes. Accurate values are not required. [3]

b) If the pressure after the adiabatic compression has risen 

to 6.6 × 106 Pa, calculate the temperature of the gas. [2]

c) In which of the four processes:

(i) is work done on the gas? [1]

(ii) is work done by the gas? [1]

(iii) does ignition of the air-fuel mixture take place? [1]

d) Explain how the 2nd law of thermodynamics applies  

to this cycle of changes. [2]

HL

5. With the aid of diagrams, explain

a) What is meant by laminar ow

b) The Bernoulli effect

c) Pascal’s principle

d) An ideal uid [8]

6. Oil, of viscosity 0.35 Pa s and density 0.95 g cm 3, ows 

through a pipe of radius 20 cm at a velocity of 2.2 m s 1. 

Deduce whether the ow is laminar or turbulent. [4]

7. A pendulum clock maintains a constant amplitude by means 

of an electric power supply. The following information is 

available for the pendulum:

Maximum kinetic energy: 5 × 10 2 J

Frequency of oscillation: 2 Hz

Q factor: 30

Calculate:

a) The driving frequency of the power supply [3]

b) The power needed to drive the clock. [3]
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Ray dIagRams
If an object is placed in front of a plane mirror, an image will  

be formed. 

The process is as follows:

• Light sets off in all directions from every part of the object. 

(This is a result of diffuse reections from a source of light.)

• Each ray of light that arrives at the mirror is reected 

according to the law of reection.

• These rays can be received by an observer. 

• The location of the image seen by the observer arises because 

the rays are assumed to have travelled in straight lines.

In order to nd the location and nature of this image a ray 

diagram is needed.

object image
upright
same size 
as object
laterally
inverted

The image formed by reection in a plane mirror is always:

• the same distance behind the mirror as the object is 

in front

• upright (as opposed to being inverted)

• the same size as the object (as opposed to being magnied 

or diminished)

• laterally inverted (i.e. left and right are interchanged)

• virtual (see below).

Real and vIRtual Images
The image formed by reection in a plane  

mirror is described as a virtual image. This  

term is used to describe images created when  

rays of light seem to come from a single point  

but in fact they do not pass through that point.  

In the example above, the rays of light seem  

to be coming from behind the mirror. They do  

not, of course, actually pass behind the mirror  

at all. 

The opposite of a virtual image is a real 

image. In this case, the rays of light do 

actually pass through a single point. 

Real images cannot be formed by plane 

mirrors, but they can be formed by 

concave mirrors or by lenses. For 

example, if you look into the concave 

surface of a spoon, you will see an image 

of yourself. This particular image is 

• Upside down

• Diminished

• Real.

object

real image

concave

mirror

(a) real image (b) virtual image

O

O

I

I

point 
object

point 
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virtual point 
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point 
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stICk In wateR
The image formed as a result of the refraction of light 

leaving water is so commonly seen that most people forget 

that the objects are made to seem strange. A straight stick 

will appear bent if it is placed in water. The brain assumes 

that the rays that arrive at one’s eyes must have been 

travelling in a straight line.

A straight stick appears bent 

when placed in water

The image of the end of the pen is:

• Nearer to the surface than the 

pen actually is.

• Virtual.

air

water



172 o p t i o n  C  –  i m a g i n g

Cri 

poweR of a lens
The power of a lens measures the extent to 

which light is bent by the lens. A higher power 

lens bends the light more and thus has a smaller 

focal length. The denition of the power of a 

lens, P, is the reciprocal of the focal length, f :

P =
1

f

f is the focal length measured in m

P is the power of the lens measured in m 1 or 

dioptres (dpt)

A lens of power = +5 dioptre is converging 

and has a focal length of 20 cm. When two thin 

lenses are placed close together their powers 

approximately add.

wave model of Image foRmatIon

O

object (source
of wave energy)

real image (point to which
wave energy is concentrated)

region in which waves are

I

Formation of a real image by refraction (ignoring diffraction)

ConveRgIng lenses
A converging lens brings parallel rays into one focus point.

parallel rays
converging lens

focal point

The reason that this happens is the refraction that takes place at 

both surfaces of the lens. 

glass

air air

normal
normal

refraction at
1st surface

refraction at
2nd surface

The rays of light are all brought together in one point because of 

the particular shape of the lens. Any one lens can be thought of 

as a collection of different-shaped glass blocks. It can be shown 

that any thin lens that has surfaces formed from sections of 

spheres will converge light into one focus point.

A converging lens will always be thicker at the centre when 

compared with the edges.

defInItIons
When analysing lenses and the images that they form, some 

technical terms need to be dened.

• The curvature of each surface of a lens makes it part of a 

sphere. The centre of curvature for the lens surface is the 

centre of this sphere. 

• The principal axis is the line going directly through the 

middle of the lens. Technically it joins the centres of 

curvature of the two surfaces.

• The focal point (principal focus) of a lens is the point on 

the principal axis to which rays that were parallel to the 

principal axis are brought to focus after passing through the 

lens. A lens will thus have a focal point on each side.

• The focal length is the distance between the centre of the 

lens and the focal point. 

• The linear magnication m, is the ratio between the size 

(height) of the image and the size (height) of the object. It 

has no units.

linear magnication, m =
image size_
object size

=
h

i_
h

o

lens

principal axis (PA)cfc

centre of
curvature

f

focal point



173o p t i o n  C  –  i m a g i n g

I ri i c 

ImpoRtant Rays
In order to determine the nature and 

position of the image created of a given 

object, we need to construct a scaled 

ray diagram of the set-up. In order to 

do this, we concentrate on the paths 

taken by three particular rays. As soon 

as the paths taken by two of these rays 

have been constructed, the paths of all 

the other rays can be inferred. These 

important rays are described below.

Converging lens

1. Any ray that was travelling 

parallel to the principal axis will be 

refracted towards the focal point 

on the other side of the lens.

f

f
PA

2. Any ray that travelled through the 

focal point will be refracted parallel 

to the principal axis.

f

f
PA

3. Any ray that goes through 

the centre of the lens will be 

undeviated.

f

f
PA

distant object

object at 2f

object between 2f and f

object at f

object closer than f

O

O

O

O

O

f

f

f

f

f

f

f

f

f

f

I

I

I

I

real image

inverted

diminished

real image

inverted

same size

PA

PA

PA

PA

PA

lens

real inverted
magnied

virtual image

upright

image at innity

virtual image

upright

magnied

Converging lens images

possIble sItuatIons
A ray diagram can be constructed as follows:

• An upright arrow on the principal axis represents the object.

• The paths of two important rays from the top of the object are constructed.

• This locates the position of the top of the image.

• The bottom of the image must be on the principal axis directly above (or below) 

the top of the image.

A full description of the image created would include the following information:

• if it is real or virtual

• if it is upright or inverted

• if it is magnied or diminished

• its exact position.

It should be noted that the important rays are just used to locate the image. The real 

image also consists of all the other rays from the object. In particular, the image will 

still be formed even if some of the rays are blocked off.

An observer receiving parallel rays sees an image located in the far distance (at 

innity).
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lens equatIon
There is a mathematical method of locating the image formed by a lens. An analysis of the angles 

involved shows that the following equation can be applied to thin spherical lenses:

1

f
=

1
v +

1
u

object

image

f f

object distance u image distance  v

Suppose u = 25 cm

f = 10 cm

This would mean that  
1
v =

1

f

1
u =

1_
10

-
1_

25
=

5_
50

-
2_
50

=
3_
50

In other word, v =
50_
3

= 16.7 cm i.e. image is real

In this case m =
16.7_
10

= -1.67 and inverted.

Real Is posItIve
Care needs to be taken with virtual images. The equation does work but for this to be the case, the following  

convention has to be followed:

• Distances are taken to be positive if actually traversed by the light ray (i.e. distances to real object and image).

• Distances are taken to be negative if apparently traversed by the light ray (distances to virtual objects and images).

• Thus a virtual image is represented by a negative value for v – in other words, it will be on the same side of  

the lens as the object.

image
object

ff object
distance u

negative image
distance v

Suppose u = 10 cm

f = 25 cm

This would mean that
1
v =

1

f

1
u =

1_
25

1_
10

=
2_

50
5_

50
= -

3_
50

In other word, v = -
50_
3

= -16.7 cm i.e. image is virtual

In this case m =+ 
16.7_
10

= +1.67 and upright

lIneaR

magnIfICatIon
In all cases, linear 

magnication,  

m =
h

i_
h

o

= -
v
u

m =
height of image__
height of object

=
h

i_
h

o

= -
v
u

For real images, m is 

negative and image is 

inverted

For virtual images m is 

positive and image is 

upright
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defInItIons and ImpoRtant Rays
Diverging lenses have the same analogous denitions as 

converging lenses for all of the following terms:

Centre of curvature, principal axis, focal point, focal length, linear 

magnication.

Note that: 

• The focal point is the point on the principal axis from 

which rays that were parallel to the principal axis appear 

to come after passing through the lens.

• As the focal point is behind the diverging lens, the focal 

length of a diverging lens is negative

When constructing ray diagrams for diverging lenses, the 

important rays whose paths are known (and from which all 

other ray paths can be inferred) are:

1. Any ray that was travelling parallel to the principal axis will 

be refracted away from a focal point on the incident side of 

the lens.

ff
PA

2. Any ray that is heading towards the focal point on the 

other side of the lens, will be refracted so as to be parallel to 

the principal axis.

f f
PA

3. Any ray that goes through the centre of the lens will be 

undeviated.

f

f
PA

Images CReated by a dIveRgIng lens
Whatever the position of the object, a diverging lens will always create an upright, diminished and virtual image located between 

the focal point and the lens on the same side of the lens as the object.

If you look at an object through a concave lens,

it will look smaller and closer.

object inside focal length

f

object

image

v
u

f

If you move the object further out, the image will not

move as much. 

object outside focal length

f

object image

The thin lens equation will still work providing one remembers the negative focal length of a diverging lens.

For example, if an object is placed at a distance 2l away from a diverging lens of focal length l, the image can be calculated as 

follows:

Given: u = 2l, f = -l, v = ?

1
u +

1
v =

1

f

1
v =

1

f
- 

1
u =

1_
l

- 
1

2l
=

3_
2l

∴ v = -
2l
3

This is a virtual diminished and upright image with m = +
1
3

dIveRgIng lenses
A diverging lens spreads parallel rays apart. These rays appear 

to all come from one focus point on the other side of the lens.

focal length

focal point

concave lens

The reason that this happens is the refraction that takes place 

at both surfaces. A diverging lens will always be thinner at the 

centre when compared with the edges.



176 o p t i o n  C  –  i m a g i n g
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geometRy of mIRRoRs and lenses
The geometry of the paths of rays after reection by a 

spherical concave or convex mirror is exactly analogous to the 

paths of rays through converging or diverging lenses. The only 

difference is that mirrors reect all rays backwards whereas 

rays pass through lenses and continue forwards.

PA

PA

PA

f

(a) Convex lens

f

(b) Concave mirror

PA

f

(c) Concave lens

f

(d) Convex mirror

This analogous behaviour means that all the denitions and 

equations for lenses can be used (with suitable attention to 

detail with the sign conventions) with mirrors.

An additional important ray for mirrors is the ray that travels 

through (or towards) the centre of curvature of the mirror 

(located at twice the focal length). This ray will be reected 

back along the same path.

Image foRmatIon In mIRRoRs

real  

inverted 

diminished

real 

inverted 

diminished

real 

inverted 

same size

real 

inverted 

magnied

virtual 

upright 

image at 

innity

virtual 

upright 

magnied

virtual 

upright 

diminished

virtual 

upright 

diminished

I

F2f

F2f

O

object at innity

object between innity and 2f

object at 2f

object at f

object between 2f and f

object between f and mirror

(2) Convex
object at innity

object near lens

I

O

F

I

2f

O

F2f

I

O

F

2f

F

2f

F

I

PA

PA

PA

2f

F 2f

(1) Concave

PA

PA

PA

PA

PA
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neaR and faR poInt
The human eye can focus objects at different 

distances from the eye. Two terms are useful to 

describe the possible range of distances – the near 

point and the far point distance.

• The distance to the near point is the distance 

between the eye and the nearest object that 

can be brought into clear focus (without strain 

or help from, for example, lenses). It is also 

known as the ‘least distance of distinct vision’. 

By convention it is taken to be 25 cm for 

normal vision.

• The distance to the far point is the distance 

between the eye and the furthest object that 

can be brought into focus. This is taken to be 

innity for normal vision.

angulaR sIze
If we bring an object closer to us (and our eyes are still able to focus on it) 

then we see it in more detail. This is because, as the object approaches, it 

occupies a bigger visual angle. The technical term for this is that the object 

subtends a larger angle.

distant
object

objects are the 
same size

angle subtended 
by distant object

close 
object

angle subtended 

angulaR magnIfICatIon
The angular magnication, M, of an optical instrument is 

dened as the ratio between the angle that an object subtends 

normally and the angle that its image subtends as a result of 

the optical instrument. The ‘normal’ situation depends on the 

context. It should be noted that the angular magnication is not 

the same as the linear magnication.

rays from object at 
specied distance

rays from nal image 
formed by optical 
instrument

top

bottom

top

bottom

θo

θi

Angular magnication, M =
θ

i

θ
o

The largest visual angle that an object can occupy is when it 

is placed at the near point. This is often taken as the ‘normal’ 

situation. 

h

D

h

D

 =

θ
o

θ
o

A simple lens can increase the angle subtended. It is usual to 

consider two possible situations.

1. Image formed at innity

In this arrangement, the object is placed at the focal point. 

The resulting image will be formed at innity and can be 

seen by the relaxed eye. 

f

f

eye focused 
on innity

h

h

f
=

θi

θi

θi

In this case the angular magnication would be

M
innity

=
θ

i

θ
o

=

h

f

h
D

=
D

f

This is the smallest value that the angular magnication  

can be.

2. Image formed at near point

In this arrangement, the object is placed nearer to the lens. 

The resulting virtual image is located at the near point. This 

arrangement has the largest possible angular magnication.

i

i

hi

h

a

D

f f

M
hi/D

h/D

hi

h

D

a
+

⇒

=
1

u

1

v

1

f

- =
1

a

1

D

1

f

∴ =
D

a

D

f
+ 1

θi

θo

θ

θ

So the magnitude of M
near point

=
D

f
+ 1
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spheRICal

A lens is said to have an aberration if, for 

some reason, a point object does not produce 

a perfect point image. In reality, lenses that 

are spherical do not produce perfect images. 

Spherical aberration is the term used to 

describe the fact that rays striking the outer 

regions of a spherical lens will be brought to a 

slightly different focus point from those striking 

the inner regions of the same lens. This is not 

to be confused with barrel distortion

In general, a point object will focus into a small 

circle of light, rather than a perfect point. There 

are several possible ways of reducing this effect:

• the shape of the lens could be altered in 

such a way as to correct for the effect. 

The lens would, of course, no longer be 

spherical. A particular shape only works for 

objects at a particular distance away.

• the effect can be reduced for a given lens by 

decreasing the aperture. The technical term 

for this is stopping down the aperture. The 

disadvantage is that the total amount of light 

is reduced and the effects of diffraction (see 

page 46) would be made worse.

The effect for mirrors can be eliminated for all 

point objects on the axis by using a parabolic 

(as opposed to a spherical) mirror.  For mirrors, 

the effect can again be reduced by using a 

smaller aperture.

ChRomatIC

Chromatic aberration is the term used 

to describe the fact that rays of different 

colours will be brought to a slightly 

different focus point by the same lens. 

The refractive index of the material used 

to make the lens is different for different 

frequencies of light.

A point object will produce a blurred 

image of different colours.

The effect can be eliminated for two 

given colours (and reduced for all) by 

using two different materials to make up 

a compound lens. This compound lens is 

called an achromatic doublet. The two 

types of glass produce equal but opposite 

dispersion.

Mirrors do not suffer from chromatic 

aberration.

white light

white light
violet 
focus

red 
focus

V

R

R

V

red

red

violet

violet

Canada balsam 
cement

converging lens 
of crown glass 
(low dispersion)

diverging lens 
of int glass 
(high dispersion)

Achromatic doublet

Spherical aberration

outer sections
of lens not used

aperture

ray striking inner regions

ray striking outer regions range of focal points
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Compound mICRosCope
A compound microscope consists of two lenses – the objective lens and the eyepiece lens. The rst lens (the objective lens) 

forms a real magnied image of the object being viewed. This real image can then be considered as the object for the second lens 

(the eyepiece lens) which acts as a magnifying lens. The rays from this real image travel into the eyepiece lens and they form a 

virtual magnied image. In normal adjustment, this virtual image is arranged to be located at the near point so that maximum 

angular magnication is obtained.

eye focused on near point to
see virtual image (in practice
it would be much nearer to the
eyepiece lens than implied here)  

top half
of object

B

O

h

objective
lens fo

h2

h1

fo θi

virtual image
of top half of
object

M

D

real image formed
by objective lens

eyepiece lens fe
construction
line construction

line 

θi fe

M =
θ

i

θ
o

=

h
2

D

h
D

=
h

2_
h

=
h

2_
h

1

h
1_
h

= linear magnication produced by eyepiece × linear magnication produced by objective

astRonomICal telesCope
An astronomical telescope also consists of two lenses. In this case, the objective lens forms a real but diminished image of the 

distant object being viewed. Once again, this real image can then be considered as the object for the eyepiece lens acting as a 

magnifying lens. The rays from this real image travel into the eyepiece lens and they form a virtual magnied image. In normal 

adjustment, this virtual image is arranged to be located at innity. 

h1

fo fe

fe
fo

parallel rays all from
top of distant object

objective 
lens eyepiece lens

real image formed in mutual 
focal plane of lenses

construction
line

virtual image 
at innity

eye focused on innity
θo

θo θi

θi

M =
θ

i

θ
o

=

h

f_
h

f

=
f
o_
f
e

The length of the telescope ≈ f
o
+ f

e
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CompaRIson of RefleCtIng and RefRaCtIng 

telesCopes
A refracting telescope uses an objective (converging) lens to 

form a real diminished image of a distant object. This image is 

then viewed by the eyepiece lens (converging) which, acting 

as a simple magnifying glass, produces a virtual but magnied 

nal image.

In an analogous way, a reecting telescope uses a concave 

mirror set up so as to form a real, diminished image of a 

distant object. This image, however, would be difcult to 

view as it would be produced in front of the concave mirror. 

Thus mirrors are used to produce a viewable image that 

can, like the refracting telescope, be viewed by the eyepiece 

lens (converging). Once again the eyepiece acts as a simple 

magnifying glass and produces the virtual, but magnied, nal 

image. Two common mountings for reecting telescopes are 

the Newtonian mounting and the Cassegrain mounting.

All telescopes are made to have large apertures in order to:

a) reduce diffraction effects, and

b) collect enough light to make bright images of low power 

sources.

Large telescopes are reecting because: 

• Mirrors do not suffer from chromatic aberration

• It is difcult to get a uniform refractive index throughout a 

large volume of glass

• Mounting a large lens is harder to achieve than mounting 

a large mirror.

• Only one surface needs to be the right shape.

Reecting telescopes can easily suffer damage to the mirror 

surface.

newtonIan mountIng
A small at mirror is placed on the principal axis of the mirror 

to reect the image formed to the side:

small at mirror
concave

mirror

eyepiece lens

F'o

Fo

CassegRaIn mountIng
A small convex mirror is mounted on the principal axis of the 

mirror. The mirror has a central hole to allow the image to be 

viewed.

The convex mirror will add to the angular magnication 

achieved.

aric rci c

small convex mirror
concave

mirror

eyepiece

lens

Fext Fo
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sIngle dIsh RadIo telesCopes
A single dish radio telescope operates in a very similar way 

to a reecting telescope. Rather than reecting visible light 

to form an image, the much longer wavelengths of radio 

waves are reected by the curved receiving dish. The antenna 

that is the receiver of the radio waves can be tuned to pick 

up specic wavelengths under observation and are used to 

study naturally occurring radio emission from stars, galaxies, 

quasars and other astronomical objects between wavelengths 

of about 10 m and 1mm. 

Radio telescope

incoming radio

waves

Radio waves reect

o the dish and

focus at the tip.

Receivers detect and

amplify radio signals.

Diffraction effects can signicantly limit the accuracy with 

which a radio telescope can locate individual sources of radio 

signals. Increasing the diameter of a radio telescope improves 

the telescope’s ability to resolve different sources and ensure 

that more power can be received (see resolution on page 101).

RadIo InteRfeRometRy telesCopes
The angular resolution of a radio telescope can be improved 

using a principle called interferometry. This process analyses 

signals received at two (or more) radio telescopes that are 

some distance apart but pointing in the same direction. This 

effectively creates a virtual radio telescope that is much larger 

than any of the individual telescopes. 

The technique is complex as it involves collecting signals 

from two or more radio telescopes (an array telescope) 

in one central location. The arrival of each signal at an 

individual antenna needs to be carefully calibrated against a 

single shared reference signal so that different signals can be 

combined as though they arrived at one single antenna. When 

the signalsfrom the different telescopes are added together, 

they interfere. The result is to create a combined telescope 

that is equivalent in resolution (though not in sensitivity) to a 

single radio telescope whose diameter is approximately equal 

to the maximum separations of the antennae. 

The principle can be extended, in a process called Very

Long Baseline Interferometry, to allow recordings of 

radio signals (originally made hundreds of km apart) to be 

synchronized to within a millionth of a second thus allowing 

scientists from different countries to collaborate to create a 

virtual radio telescope of huge size and high resolving power.

CompaRatIve peRfoRmanCe of eaRth-bound and satellIte-boRne telesCopes
The following points about Earth-based (EB) and satellite-borne (SB) telescopes can be made:

• SB observations are free from interference and/or absorptions due to the Earth’s atmosphere that hinder EB observations, giving 

better resolution for SB telescopes. 

• Modern computer techniques can effectively correct for many atmospheric effects making new ground-based telescopes similar 

in resolution to some SB telescopes.

• Many signicant wavelengths of EM radiation (UV, IR and long wavelength radio) are absorbed by the Earth’s atmosphere so SB 

telescopes are the only possibility in their wavelengths.

• SB observations do not suffer from light pollution / radio interference as a result of nearby human activity.

• SB facilities are not subject to continual wear and tear as a result of the Earth’s atmosphere (storms etc.).

• The possibility of damage from space debris exists for SB telescopes.

• There is a great deal of added cost in getting the telescope into orbit and controlling it remotely, meaning that SB telescopes are 

signicantly more expensive to build and this places a limit on their size and weight.

• There is an added difcultly of effecting repairs / alterations to a SB telescope once operational.

• SB telescopes need to withstand wider temperature variations than EB telescopes. 

• EB optical telescopes can only operate at night whereas SB telescopes can operate at all times.

Ri c
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optIC fIbRe
Optic bres use the principle of total internal reection (see 

page 45) to guide light along a certain path. The idea is to 

make a ray of light travel along a transparent bre by bouncing 

between the walls of the bre. So long as the incident angle of 

the ray on the wall of the bre is always greater than the critical 

angle, the ray will always remain within the bre even if the 

bre is bent (see right).

As shown on page 45, the relation between critical angle, c, and 

refractive index n is given by 

n =

1_
sin c

Two important uses of optic bres are:

• In the communication industry. Digital data can be encoded 

into pulses of light that can then travel along the bres. This 

is used for telephone communication, cable TV etc.

• In the medical world. Bundles of optic bres can be used to 

carry images back from inside the body. This instrument is 

called an endoscope.

• This type of optic bre is known as a step-index optic 

bre. Cladding of a material with a lower refractive index 

surrounds the bre. This cladding protects and strengthens 

the bre.

types of optIC fIbRes
The simplest bre optic is a step-index bre. 

Technically this is known as a multimode step-

index bre. Multimode refers to the fact that light can 

take different paths down the bre which can result in 

some distortion of signals (see waveguide dispersion, 

page 183). The (multimode) graded-index bre is 

an improvement. This uses a graded refractive index 

prole in the bre meaning that rays travel at different 

speeds depending on their distance from the centre. 

This has the effect of reducing the spreading out of the 

pulse. Most bres used in data communications have a 

graded index. The optimum solution is to have a very 

narrow core – a singlemode step-index bre

multimode step-index

index

prole

index

pulse

output

pulse

n2

n1

multimode graded-index

singlemode step-index

n2
n1

n2
n1
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attenuatIon
As light travels along an optic bre, some of the energy can be 

scattered or absorbed by the glass. The intensity of the light energy 

that arrives at the end of the bre is less than the intensity that 

entered the bre. The signal is said to be attenuated. 

The amount of attenuation is measured on a logarithmic scale 

in decibels (dB). The attenuation is given by

attenuation (dB) = 10log 
I

I
o

I is the intensity of the output power measured in W

I
o
 is the intensity of the original input power measured in W

A negative attenuation means that the signal has been reduced 

in power. A positive attenuation would imply that the signal 

has been amplied.

See page 188 for another example of the use of the decibel scale. 

It is common to quote the attenuation per unit length as 

measured in dB km 1. For example, 5 km of bre optic cable 

causes an input power of 100 mW to decrease to 1 mW.  

The attenuation per unit length is calculated as follows:

attenuation = 10 log (10 3/10 1) = 10 log (10 2) 

= -20 dB

attenuation per unit length = -20 dB/5 km 

= -4 dB km 1

The attenuation of a 10 km length of this bre optic cable 

would therefore be 40 dB. The overall attenuation resulting 

from a series of factors is the algebraic sum of the individual 

attenuations.

The attenuation in an optic bre is a result of several 

processes:those caused by impurities in the glass, the general 

scattering that takes place in the glass and the extent to which 

the glass absorbs the light. These last two factors are affected by 

the wavelength of light used. A typical the overall attenuation is 

shownbelow:
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mateRIal dIspeRsIon
The refractive index of any substance depends on the 

frequency of electromagnetic radiation considered. This is the 

reason that white light is dispersed into different colours when 

it passes through a triangular prism. 

As light travels along an optical bre, different frequencies will 

travel at slightly different speeds. This means that if the source 

of light involves a range of frequencies, then a pulse that starts 

out as a square wave will tend to spread out as it travels along 

the bre. This process is known as material dispersion

before transmission after transmission

CapaCIty
Attenuation causes an upper limit to the amount of digital 

information that can be sent along a particular type of optical 

bre. This is often stated in terms of its capacity.

capacity of an optical bre = bit rate × distance

A bre with a capacity of 80 Mbit s 1 km can transmit  

80 Mbit s 1 along a 1 km length of bre but only 20 Mbit s 1

along a 4 km length.

waveguIde dIspeRsIon
If the optical bre has a signicant diameter, another process 

called waveguide dispersion that can cause the stretching of 

a pulse is multipath or modal dispersion. The path length 

along the centre of a bre is shorter than a path that involves 

multiple reections. This means that rays from a particular 

pulse will not all arrive at the same time because of the different 

distances they have travelled.

B

C

A

cladding paths core

The problems caused by modal dispersion have led to the 

development of monomode (or singlemode) step-index 

bres. These optical bres have very narrow cores (of the 

same order of magnitude as the wavelength of the light being 

used (approximately 5 µm) so that there is only one effective 

transmission path – directly along the bre.

noIse, amplIfIeRs and ReshapeRs
Noise is inevitable in any electronic circuit. Any dispersions or 

scatterings that take place within an optical bre will also add 

to the noise.

An amplier increases the signal strength and thus will tend 

to correct the effect of attenuation – these are also sometimes 

called regenerators. An amplier will also increase any noise 

that has been added to the electrical signal.

A reshaper can reduce the effects of noise on a digital signal 

by returning the signal to a series of 1s and 0s with sharp 

transitions between the allowed levels.

diri, i  i i ic r
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C  cici

The table below shows some common communication links.

Options for communication Uses Advantages and disadvantages

Wire pairs 

(twisted pair)

Two wires can connect 

the sender and receiver of 

information. For example 

a simple link between a 

microphone, an amplier and 

a loudspeaker.

Very simple communication 

systems e.g. intercom

Very simple and cheap. 

Susceptible to noise and interference. 

Unable to transfer information at the 

highest rates.

Coaxial cables

copper
wire

insulation

copper mesh

outside insulation

This arrangement of two wires 

reduces electrical interference. 

A central wire is surrounded 

by the second wire in the form 

of an outer cylindrical copper 

tube or mesh. An insulator 

separates the two wires.

Wire links can carry 

frequencies up to about 1 GHz 

but the higher frequencies will 

be attenuated more for a given 

length of wire. A typical 100 

MHz signal sent down low-loss 

cable would need repeaters 

at intervals of approximately 

0.5 km.

The upper limit for a single 

coaxial cable is approximately 

140 Mbit s 1

Coaxial cables are used 

to transfer signals from 

TV aerials to TV receivers. 

Historically they are 

standard for underground 

telephone links.

Simple and straightforward. 

Less susceptible to noise compared 

to simple wire pair but noise still a 

problem.

Optical bres Laser light can be used to send 

signals down optical bres 

with approximately the same 

frequency limit as cables 

1GHz.

The attenuation in an optical 

bre is less than in a coaxial 

cable. The distance between 

repeaters can easily be tens (or 

even hundreds) of kilometres.

Long-distance 

telecommunication and 

high volume transfer of 

digital data including video 

data.

Compared to coaxial cables with 

equivalent capacity, optical bres:

• have a higher transmission capacity

• are much smaller in size and weight

• cost less

• allow for a wider possible spacing of 

regenerators

• offer immunity to electromagnetic 

interference

• suffer from negligible cross talk 

(signals in one channel affecting 

another channel)

• are very suitable for digital data 

transmission 

• provide good security

• are quiet – they do not hum even 

when carrying large volumes of 

data. 

There are some disadvantages:

• the repair of bres is not a simple 

task

• regenerators are more complex and 

thus potentially less reliable. 

copper wire
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IntensIty, qualIty and attenuatIon
The effects of X-rays on matter depend on two things, the 

intensity and the quality of the X-rays.

• The intensity, I, is the amount of energy per unit area that 

is carried by the X-rays.

• The quality of the X-ray beam is the name given to the 

spread of wavelengths that are present in the beam. 

Low-energy photons will be absorbed by all tissues and 

potentially cause harm without contributing to forming the 

image. It is desirable to remove these from the beam.

If the energy of the beam is absorbed, then it is said to be 

attenuated. If there is nothing in the way of an X-ray beam, it 

will still be attenuated as the beam spreads out. Two processes of 

attenuation by matter, simple scattering and the photoelectric 

effect are the dominant ones for low-energy X-rays.

scattering photoelectric 
eect

low  X-ray 
photon low  X-ray 

photon

X-ray 
photon electron

electron light 
photon

Simple scattering affects X-ray photons that have energies 

between zero and 30 keV.

• In the photoelectric effect, the incoming X-ray has enough 

energy to cause one of the inner electrons to be ejected from 

the atom. It will result in one of the outer electrons ‘falling 

down’ into this energy level. As it does so, it releases some 

light energy. This process affects X-ray photons that have 

energies between zero and 100 keV.

Both attenuation processes result in a near exponential 

transmission of radiation as shown in the diagram below. For 

a given energy of X-rays and given material there will be a 

certain thickness that reduces the intensity of the X-ray by 

50%. This is known as the half-value thickness

100%

50%

X
 t

ra
n

s
m

is
s
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n

half-value 
thickness

thickness of absorber, x

= e x

I0

I

The attenuation coefcient µ is a constant that mathematically 

allows us to calculate the intensity of the X-rays given any 

thickness of material. The equation is as follows:

I = I
0
e µx

The relationship between the attenuation coefcient and the 

half-value thickness is

µx1
2

= ln 2

x1
2

The half-value thickness of the material (in m)

ln 2 The natural log of 2. This is the number 0.6931

µ The attenuation coefcient (in m 1)

µ depends on the wavelength of the X-rays – short wavelengths 

are highly penetrating and these X-rays are hard. Soft x-rays 

are easily attenuated and have long wavelengths.

basIC x-Ray dIsplay teChnIques
The basic principle of X-ray imaging is that some body parts 

(for example bones) will attenuate the X-ray beam much 

more than other body parts (for example skin and tissue). 

Photographic lm darkens when a beam of X-rays is shone on 

them so bones show up as white areas on an X-ray picture.

X-ray 
photograph

X-ray beam

The sharpness of an X-ray image is a measure of how easy it is 

to see edges of different organs or different types of tissue.

X-ray beams will be scattered in the patient being scanned 

and the result will be to blur the nal image and to reduce 

the contrast and sharpness. To help reduce this effect, a metal 

lter grid is added below the patient: 

patient

X-ray beam

X-ray lm

metal grid

Alternatively computer software can be used to detect and 

enhance edges.

Since X-rays cause ionizations, they are dangerous. This 

means that the intensity used needs to be kept to an absolute 

minimum. This can be done by introducing something to 

intensify (to enhance) the image. There are two simple 

techniques of enhancement:

• When X-rays strike an intensifying screen the energy is re-

radiated as visible light. The photographic lm can absorb 

this extra light. The overall effect is to darken the image in 

the areas where X-rays are still present (see page 187).

• In an image-intensier tube, the X-rays strike a uorescent 

screen and produce light. This light causes electrons to be 

emitted from a photocathode. These electrons are then 

accelerated towards an anode where they strike another 

uorescent screen and give off light to produce an image.

mass attenuatIon CoeffICIent
An alternative way of writing the equation for the attenuation 

coefcient is shown below:

I = I
0

e (μρ)ρx

Where ρ is the density of the substance.  In this format, 
μ
ρ  is 

known as the mass attenuation coefcient
μ
ρ  , and ρx is 

known as the area density or mass thickness

Units of mass attenuation coefcient, 
μ

ρ = m2 kg 1

Units of area density, ρx = kg m 2

x-rHL

I = I
0

e (μρ)ρx
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1) Intensifying screens

The arrangement of the intensifying screens described on 

page 185 are shown below.

X-rays emerging from patient

about
12 mm

cassette front (plastic)

front intensifying screen: phosphor

double-sided lm

rear intensifying screen: phosphor

felt padding

cassette 

With a simple X-ray photograph it is hard to identify 

problems within soft tissue, for example in the gut. There 

are two general techniques aimed at improving this 

situation.

2) Barium meals

In a barium meal, a dense substance is swallowed and 

its progress along the gut can be monitored. The contrast 

between the gut and surrounding tissue is increased. 

Typically the patient is asked to swallow a harmless solution 

of barium sulfate. The result is an increase in the sharpness 

of the image.

3) Tomography

Tomography is a technique that makes the X-ray 

photograph focus on a certain region or ‘slice’ through 

the patient. All other regions are blurred out of focus. This 

is achieved by moving the source of X-rays and the lm 

together.

lm

X-ray tube
motion

motion

pivot point

A
B

plane of cut

X-ray table

A′ B′ A′ B′B′′

An extension of basic tomography is the computed 

tomography scan or CT scan. In this set-up a tube sends 

out a pulse of X-rays and a set of sensitive detectors collects 

information about the levels of X-radiation reaching each 

detector. The X-ray source and the detectors are then rotated 

around a patient and the process is repeated. A computer 

can analyse the information recorded and is able to 

reconstruct a 3-dimensional ‘map’ of the inside of the body 

in terms of X-ray attenuation.

x-r ii ciHL
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ultRasound 
The limit of human hearing is about 20 kHz. Any sound that 

is of higher frequency than this is known as ultrasound. 

Typically ultrasound used in medical imaging is just within 

the MHz range. The velocity of sound through soft tissue is 

approximately 1500 m s 1 meaning that typical wavelengths 

used are of the order of a few millimetres.

Unlike X-rays, ultrasound is not ionizing so it can be used very 

safely for imaging inside the body – with pregnant women for 

example. The basic principle is to use a probe that is capable 

of emitting and receiving pulses of ultrasound. The ultrasound 

is reected at any boundary between different types of tissue. 

The time taken for these reections allows us to work out 

where the boundaries must be located.

abdominal wall

probe

organ

path of ultrasound

reections from 
boundaries

vertebra

aCoustIC ImpedanCe
The acoustic impedance of a substance is the product of the 

density, ρ, and the speed of sound, c

Z = ρc

unit of Z = kg m 2 s 1

Very strong reections take place when the boundary is 

between two substances that have very different acoustic 

impedances. This can cause some difculties.

• In order for the ultrasound to enter the body in the rst 

place, there needs to be no air gap between the probe and 

the patient’s skin. An air gap would cause almost all of the 

ultrasound to be reected straight back. The transmission of 

ultrasound is achieved by putting a gel or oil (of similar density 

to the density of tissue) between the probe and the skin.

• Very dense objects (such as bones) can cause a strong 

reection and multiple images can be created. These need 

to be recognized and eliminated.

organ

path of
ultrasound

2nd reection back
war

beam reected
from bone

2nd reection reected
by bone back to probe

original 
reection

a- and b-sCans
There are two ways of presenting the information gathered 

from an ultrasound probe, the A-scan or the B-scan. The

A-scan (amplitude-modulated scan) presents the information 

as a graph of signal strength versus time. The B-scan 

(brightness-modulated scan) uses the signal strength to affect 

the brightness of a dot of light on a screen.

to scan display organ

pulse

echo vertebra

A-scan display

B-scan display
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A-scans are useful where the arrangement of the internal 

organs is well known and a precise measurement of distance 

is required. If several B-scans are taken of the same section 

of the body at one time, all the lines can be assembled into 

an image which represent a section through the body. This 

process can be achieved using a large number of transducers.

probe placenta

foetal 
skull

limbs

(i)

(i)

(ii)

(ii)

(iii)

(iii)

Building a picture from a series of B-scan lines

pIezoeleCtRIC CRystals
These quartz crystals change shape when an electric current ows 

and can be used with an alternating pd to generate ultrasound. 

They also generate pds when receiving sound pressure waves so 

one crystal is used for generation and detection.

ChoICe of fRequenCy
The choice of frequency of ultrasound to use can be seen as 

the choice between resolution and attenuation. 

• Here, the resolution means the size of the smallest object 

that can be imaged. Since ultrasound is a wave motion, 

diffraction effects will be taking place. In order to image a 

small object, we must use a small wavelength. If this was 

the only factor to be considered, the frequency chosen 

would be as large as possible.

• Unfortunately attenuation increases as the frequency of 

ultrasound increases. If very high frequency ultrasound 

is used, it will all be absorbed and none will be reected 

back. If this was the only factor to be considered, the 

frequency chosen would be as small as possible.

On balance the frequency chosen has to be somewhere 

between the two extremes. It turns out that the best choice of 

frequency is often such that the part of the body being imaged 

is about 200 wavelengths of ultrasound away from the probe.

uric iiHL
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RelatIve IntensIty levels of ultRasound
The relative intensity levels of ultrasound between two points 

are compared using the decibel scale (dB).  As its name suggests, 

the decibel unit is simply one tenth of a base unit that is called 

the bel (B).  The decibel scale is logarithmic.

Mathematically,

Relative intensity level in bels, 

L
I
= log

intensity level of ultrasound at measurement point_____
intensity level of ultrasound at reference point

or Relative intensity level in bels = log
I

1

I
0

Since 1 bel = 10 dB,

Relative intensity level in decibels, L
I
= 10 log

I
1

I
0

CompaRIson between ultRasound and nmR
The following points can be noted:

• NMR imaging is very expensive when compared with 

ultrasound equipment and is very bulky – patient needs to be 

brought to the NMR machine and process is time consuming.

• Ultrasound measurements are easy to perform (equipment can 

be brought to patient at the point of care) and can be repeated 

as required but quality of image can rely on skill of operator.

• NMR produces a 3-dimensional scan, ultrasound typically 

produces a 2-dimensional scan.

• Detail produced by NMR is greater than by ultrasound.

• NMR particularly useful for very delicate areas of body e.g. brain.

• NMR patients have to remain very still, ultrasound images 

can be more dynamic.

• Ultrasound waves do not enter the body easily and multiple 

reections can reduce the clarity of the image.

• Both wave energies carry energy but the energy associated 

with the ultrasound is greater that the energy associated 

with the radio frequencies used in NMR.

• At the radio frequencies used in NMR there is no danger of 

resonance but some ultrasound energy can cause heating.

• Ultrasound can cause cavitation – the production of small 

gas bubbles which will absorb energy and can damage 

surrounding tissue. The frequencies and intensities used for 

diagnostics avoid this possibility as much as possible.

• The strong magnetic elds used in NMR present problems 

for patients with surgical implants and / or pacemakers.

nmR
Nuclear Magnetic Resonance (NMR) is a very complicated 

process but one that is extremely useful. It can provide detailed 

images of sections through the body without any invasive 

or dangerous techniques. It is of particular use in detecting 

tumours in the brain. It involves the use of a non-uniform 

magnetic eld in conjuction with a large uniform eld.

In outline, the process is as follows:

• The nuclei of atoms have a property called spin.

• The spin of these nuclei means that they can act like tiny 

magnets.

• These nuclei will tend to line up in a strong magnetic eld.

RF generator

eld
gradient
coils

S

N

RF coil

body
receiver

permanent magnet

oscilloscope

relaxation time

• They do not, however, perfectly line up – they oscillate in a 

particular way that is called precession. This happens at a very 

high frequency – the same as the frequency of radio waves.

• The particular frequency of precession depends on the 

magnetic eld and the particular nucleus involved. It is 

called the Larmor frequency

• If a pulse of radio waves is applied at the Larmor frequency, 

the nuclei can absorb this energy in a process called 

resonance. The protons make a spin transition.

• After the pulse, the nuclei return to their lower energy state 

by emitting radio waves.

• The time over which radio waves are emitted is called the 

relaxation time

• The radio waves emitted and their relaxation times can be 

processed to produce the NMR scan image.

• The signal analysis is targeted at the hydrogen nuclei 

(protons) present.  

• The number of H nuclei varies with the chemical 

composition so different tissues extract different amounts of 

energy from the applied signal.

• Thus RF signal forces protons to make a spin transition and 

◊ The gradient eld allows determination of the point from 

which the photons are emitted.

◊ The proton spin relaxation time depends on the type of 

tissue at the point where the radiation is emitted.

Ii ci HL
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1. For each of the following situations, locate and describe 

the nal image formed. Solutions should found using scale 

diagrams and mathematically.

a) An object is placed 7 cm in front of a concave mirror of 

focal length 14 cm. [4]

b) A diverging lens of focal length 12.0 cm is placed at the 

focal point of a converging lens of focal length 8.0 cm. An 

object is placed 16.0 cm in front of the converging lens. [4]

c) An object is placed 18.0 cm in front of a convex lens of 

focal length 6.0 cm. A second convex lens of focal length 

3.0 cm is an additional 18 cm behind the rst lens. [4]

2. A student is given two converging lenses, A and B, and a 

tube in order to make a telescope.

a) Describe a simple method by which she can determine  

the focal length of each lens. [2]

b) She nds the focal lengths to be as follows:

Focal length of lens A 10 cm

Focal length of lens B 50 cm

Draw a diagram to show how the lenses should be 

arranged in the tube in order to make a telescope. Your 

diagram should include:

(i) labels for each lens;

(ii) the focal points for each lens;

(iii) the position of the eye when the telescope is in use. [4]

c) On your diagram, mark the location of the intermediate 

image formed in the tube. [1]

d) Is the image seen through the telescope upright or  

upside-down? [1]

e) Approximately how long must the telescope tube be? [1]

3. Explain what is meant by

a) Material dispersion e) A Cassegrain mounting

b) Waveguide dispersion f) Total Internal reection

c) Spherical aberrations g) Step-index bres 

d) Chromatic aberrations [2 each]

4. A 15 km length of optical bre has an attenuation of  

4 dB km 1. A 5 mW signal is sent along the wire using two 

ampliers as represented by the diagram below.

input power

= 5 mW

optical bre
output

gain = 20 dB gain = 30 dB

Calculate

a) the overall gain of the system

b) the output power. [2]

HL

5. This question is about ultrasound scanning.

a) State a typical value for the frequency of ultrasound  

used in medical scanning. [1]

The diagram below shows an ultrasound transmitter and 

receiver placed in contact with the skin.

d

l

O

layer of skin and fat

ultrasound transmitter

and receiver

The purpose of this particular scan is to nd the depth d

of the organ labelled O below the skin and also to nd its 

length, I

b) (i) Suggest why a layer of gel is applied between the 

ultrasound transmitter/receiver and the skin. [2]

On the graph below the pulse strength of the reected pulses 

is plotted against the time lapsed between the pulse being 

transmitted and the time that the pulse is received, t

0 25 50
t / µs

75 100 125 150 175 200 225 250 275 300

D

A

B

C

p
u

ls
e

 s
tr

e
n

g
th

 /
 

re
la

ti
ve

 u
n

it
s

(ii) Indicate on the diagram the origin of the reected 

pulses A, B and C and D. [2]

(iii) The mean speed in tissue and muscle of the  

ultrasound used in this scan is 1.5 × 103 ms 1.  

Using data from the above graph, estimate the  

depth d of the organ beneath the skin and the  

length l of the organ O. [4]

c) The above scan is known as an A-scan. State one

way in which a B-scan differs from an A-scan. [1]

d) State one advantage and one disadvantage of using 

ultrasound as opposed to using X-rays in medical 

diagnosis. [2]

6. a) State and explain which imaging technique is normally 

used

(i) to detect a broken bone [2]

(ii) to examine the growth of a fetus. [2]

The graph below shows the variation of the intensity I of  

a parallel beam of X-rays after it has been transmitted 

through a thickness x of lead.
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b) (i) Dene half-value thickness, x
2

. [2]

(ii) Use the graph to estimate x
2

 for this beam in  

lead. [2]

(iii) Determine the thickness of lead required to  

reduce the intensity transmitted to 20% of its  

initial value. [2]

(iv) A second metal has a half-value thickness x
2

for this radiation of 8 mm. Calculate what 

thickness of this metal is required to reduce the 

intensity of the transmitted beam by 80%. [3]

i B  Q u e s t i o n s  –  o p t i o n  C  –  i m a g i n g
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Solar SyStem
We live on the Earth. This is one of eight planets that orbit the Sun – collectively this system is known as the Solar System. 

Each planet is kept in its elliptical orbit by the gravitational attraction between the Sun and the planet. Other smaller masses 

such as dwarf planets like Pluto or planetoids also exist.

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

diameter / km 4,880 12,104 12,756 6,787 142,800 120,000 51,800 49,500

distance to Sun / × 108 m 58 107.5 149.6 228 778 1,427 2,870 4,497

Sun

Venus

Mercury
Earth

Mars

Jupiter
Uranus

Saturn Neptune

Relative positions of the planets

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Sun

Relative sizes of the planets

Some of these planets (including the Earth) have other small 

objects orbiting around them called moons. Our Moon is  

3.8 × 108 m away and its diameter is about 1/4 of the Earth‘s.

An asteroid is a small rocky body that drifts around the Solar 

System. There are many orbiting the Sun between Mars and 

Jupiter – the asteroid belt. An asteroid on a collision course 

with another planet is known as a meteoroid.

Small meteors can be vaporized due to the friction with the 

atmosphere (‘shooting stars’) whereas larger ones can land  

on Earth. The bits that arrive are called meteorites

Comets are mixtures of rock and ice (a ‘dirty snowball’) in very 

elliptical orbits around the Sun. Their ‘tails’ always point away 

from the Sun.

ojs   vs (1)

View from one place on earth
If we look up at the night sky we see the stars – many of these 

‘stars’ are, in fact, other galaxies but they are very far away. 

The stars in our own galaxy appear as a band across the sky – 

the Milky Way.

Patterns of stars have been identied and 88 different regions 

of the sky have been labelled as the different constellations. 

Stars in a constellation are not necessarily close to one 

another.

Over the period of a night, the constellations seem to rotate 

around one star. This apparent rotation is a result of the 

rotation of the Earth about its own axis.

On top of this nightly rotation, there is a slow change in 

thestars and constellations that are visible from one night 

tothe next. This variation over the period of one year is due 

to the rotation of the Earth about the Sun.

Planetary systems have been discovered around many stars.

View from place to place on earth
If you move from place to place around the Earth, the section 

of the night sky that is visible over a year changes with 

latitude. The total pattern of the constellations is always the 

same, but you will see different sections of the pattern. 

nebulae
In many constellations there are diffuse but relatively large 

structures which are called nebulae. These are interstellar 

clouds of dust, hydrogen, helium and other ionized gases. An 

example is M42 otherwise known as the Orion Nebula. 

o p t i o n  D  –  a S t r o p h y S i c S16
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During one Day
The most important observation is that the pattern of the 

stars remains the same from one night to the next. Patterns 

of stars have been identied and 88 different regions of the 

sky have been labelled as the different constellations. A 

particular pattern is not always in the same place, however. 

The constellations appear to move over the period of one night. 

They appear to rotate around one direction. In the Northern 

Hemisphere everything seems to rotate about the pole star. 

It is common to refer measurements to the ‘xed stars’ the 

patterns of the constellations. The xed background of stars 

always appears to rotate around the pole star. During the night, 

some stars rise above the horizon and some stars set beneath it.

looking north eastwest

pole star

The same movement is continued during the day. The 

Sun rises in the east and sets in the west, reaching its 

maximum height at midday. At this time in the Northern 

Hemisphere the Sun is in a southerly direction.

east westlooking south

Sun

During the year
Every night, the constellations have the same relative positions 

to each other, but the location of the pole star (and thus the 

portion of the night sky that is visible above the horizon) 

changes slightly from night to night. Over the period of a year 

this slow change returns back to exactly the same position.

The Sun continues to rise in the east and set in the west, but 

as the year goes from winter into summer, the arc gets bigger 

and the Sun climbs higher in the sky. 

unitS
When comparing distances on the astronomical scale, it can be quite unhelpful to remain in SI units. Possible other units include 

the astronomical unit (AU), the parsec (pc) or the light year (ly). See page 193 for the denition of the rst two of these.

The light year is the distance travelled by light in one year (9.5 × 1015 m). The next nearest star to our Sun is about 4 light years 

away. Our galaxy is about 100,000 light years across. The nearest galaxy is about a million light years away and the observable 

Universe is 13.7 billion light years in any given direction.

the uniVerSe
Stars are grouped together in stellar clusters. These 

can be open containing 103 stars e.g. located in the disc 

of our galaxy or globular containing 105 stars. Our Sun 

is just one of the billions of stars in our galaxy (the 

Milky Way galaxy). The galaxy rotates with a period of 

about 2.5 × 108 years. 

Beyond our galaxy, there are billions of other galaxies. 

Some of them are grouped together into clusters or 

super clusters of galaxies, but the vast majority of 

space (like the gaps between the planets or between 

stars) appears to be empty – essentially a vacuum. 

Everything together is known as the Universe

1.5 × 1026 m 

(= 15 billion light years)

the visible 

Universe

5 × 1022 m 

(= 5 million light years)

local group 

of galaxies

1021 m 

(= 100,000 light years)
our galaxy

1013 m 

(= 0.001 light years)

our Solar 

System

ojs   vs (2)

The Milky Way galaxy

the milky way galaxy
When observing the night sky a faint  

band of light can be seen crossing the  

constellations. This ‘path’ (or ‘way’)  

across the night sky became known as  

the Milky Way. What you are actually  

seeing is some of the millions of stars  

that make up our own galaxy but they  

are too far away to be seen as individual  

stars. The reason that they appear to be  

in a band is that our galaxy has a  

spiral shape.

The centre of our galaxy lies in the 

direction of the constellation Sagittarius. 

The galaxy is rotating – all the stars 

are orbiting the centre of the galaxy as 

a result of their mutual gravitational 

attraction. The period of orbit is about 

250 million years.

direction 

of

rotation

100 000 light years
side view plan view

galactic nucleus

Sun

Sun

disc

globular clusters
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t   ss

energy flow for StarS

The stars are emitting a great deal of energy. The source for all this 

energy is the fusion of hydrogen into helium. See page 196. Sometimes 

this is referred to as ‘hydrogen burning’ but it this is not a precise 

term. The reaction is a nuclear reaction, not a chemical one (such as 

combustion). Overall the reaction is

4 1

1p → 2

4He + 2 1

0e+ + 2ν

The mass of the products is less than the mass of the reactants. Using  

ΔE = Δm c
2 we can work out that the Sun is losing mass at a rate of  

4 × 10 9 kg s 1. This takes place in the core of a star. Eventually all this 

energy is radiated from the surface – approximately 1026 J every second. 

The structure inside a star does not need to be known in detail.

core

(nuclear reactions)

convective zone

surface

radiative

zone

binary StarS

Our Sun is a single star. Many ‘stars’ actually turn out to be two 

(or more) stars in orbit around each other. (To be precise they 

orbit around their common centre of mass.) These are called 

binary stars. 

binary stars – two stars in orbit around
their common centre of mass

centre of mass

There are different categories of binary star – visual, 

spectroscopic and eclipsing. 

1. A visual binary is one that can be distinguished as two 

separate stars using a telescope. 

2. A spectroscopic binary star is identied from the analysis 

of the spectrum of light from the ‘star’. Over time the 

wavelengths show a periodic shift or splitting in frequency. 

An example of this is shown (below).

night 0

night 24

night 12

wavelength

A B A B A B A B

Each wavelength 

splits into two 

separate

wavelengths.

The explanation for the shift in frequencies involves the Doppler 

effect. As a result of its orbit, the stars are sometimes moving 

towards the Earth and sometimes they are moving away. When 

a star is moving towards the Earth, its spectrum will be blue

shifted. When it is moving away, it will be red shifted. 

night 12
A

B

observer

light from A 

will be blue shifted

Star A is moving

towards  observer

whereas star B is

moving away

light from B 

will be red shifted

night 0 A

B

observer

Both stars are

moving  at 90°

to observer

night 24
B

A

observer

3. An eclipsing binary star is identied from the analysis of the 

brightness of the light from the ‘star’. Over time the brightness 

shows a periodic variation. An example of this is shown below.

time (nights)

br
ig

ht
ne

ss

The explanation for the ‘dip’ in brightness is that as a result 

of its orbit, one star gets in front of the other. If the stars 

are of equal brightness, then this would cause the total 

brightness to drop to 50%.

observer

star B

star A

When one star blocks the light

coming  from the other star, the

overall brightness is reduced

equilibrium

The Sun has been radiating energy for the past 4½ 

billion years. It might be imagined that the powerful 

reactions in the core should have forced away the 

outer layers of the Sun a long time ago. Like other 

stars, the Sun is stable because there is a hydrostatic

equilibrium between this outward pressure and the 

inward gravitational force (see page 164).

inward pull 

of gravity

outward radiation 

‘pressure’

A stable star is in equilibrium
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S 

principleS of meaSurement
As you move from one position to another objects change 

their relative positions. As far as you are concerned, near 

objects appear to move when compared with far objects. 

Objects that are very far away do not appear to move at 

all. You can demonstrate this effect by closing one eye and 

moving your head from side to side. An object that is near to 

you (for example the tip of your nger) will appear to move 

when compared with objects that are far away (for example a 

distant building).

This apparent movement is known as parallax and the effect 

can used to measure the distance to some of the stars in our 

galaxy. All stars appear to move over the period of a night, but 

some stars appear to move in relation to other stars over the 

period of a year. 

If carefully observed, over the period

of a year some stars can appear to move

between two extremes.

The reason for this apparent movement is that the Earth has 

moved over the period of a year. This change in observing 

position has meant that a close star will have an apparent 

movement when compared with a more distant set of stars. 

The closer a star is to the Earth, the greater will be the 

parallax shift. 

Since all stars are very distant, this effect is a very small one 

and the parallax angle will be very small. It is usual to quote 

parallax angles not in degrees, but in seconds. An angle of 1 

second of arc ('') is equal to one sixtieth of 1 minute of arc (') 

and 1 minute of arc is equal to one sixtieth of a degree. 

In terms of angles, 3600'' = 1°

360° = 1 full circle.

example
The star alpha Eridani (Achemar) is 1.32 × 1018 m away. 

Calculate its parallax angle.

d = 1.32 × 1018 m

=
1.32 × 1018
___________
3.08 × 1016

 pc

= 42.9 pc

parallax angle =
1_____

42.9

= 0.02''

mathematicS – unitS
The situation that gives rise to a change in apparent position 

for close stars is shown below. 

orbit of Earth

close star

distant stars

stellar 
distance 

d

parallax angle

Earth
(July)

Earth (January)
Sun

1AU

θθ

θ θ

The parallax angle, θ, can be measured by observing the changes 

in a star’s position over the period of a year. From trigonometry, 

if we know the distance from the Earth to the Sun, we can work 

out the distance from the Earth to the star, since

tan θ =
(distance from Earth to Sun)__________________________
(distance from Sun to Star)

Since θ is a very small angle, tan θ ≈ sin θ ≈ θ (in radians)

This means that θ ∝
1__________________________

(distance from Earth to star)

In other words, parallax angle and distance away are inversely 

proportional. If we use the right units we can end up with a 

very simple relationship. The units are dened as follows.

The distance from the Sun to the Earth is dened to be one 

astronomical unit (AU). It is 1.5 × 1011 m. Calculations 

show that a star with a parallax angle of exactly one second 

of arc must be 3.08 × 1016 m away (3.26 light years). This 

distance is dened to be one parsec (pc). The name ‘parsec’ 

represents ‘parallax angle of one second’.

If distance = 1 pc, θ = 1 second

If distance = 2 pc, θ = 0.5 second etc.

Or, distance in pc =
1_________________________

(parallax angle in seconds)

d =
1
p

The parallax method can be used to measure stellar distances 

that are less than about 100 parsecs. The parallax angle 

for stars that are at greater distances becomes too small to 

measure accurately. It is common, however, to continue to 

use the unit. The standard SI prexes can also be used even 

though it is not strictly an SI unit.

1000 parsecs = 1 kpc

106 parsecs = 1 Mpc etc.
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ls

luminoSity anD apparent brightneSS
The total power radiated by a star is called its luminosity (L).  

The SI units are watts. This is very different to the power 

received by an observer on the Earth. The power received per 

unit area is called the apparent brightness of the star. The SI 

units are W m 2. 

If two stars were at the same distance away from the Earth 

then the one with the greater luminosity would be brighter. 

Stars are, however, at different distances from the Earth. The 

brightness is inversely proportional to the (distance)2. 

inverse square

x x

area A

area 4A

As distance increases, the brightness decreases since 

the light is spread over a bigger area.

distance brightness

x b

b

4

b

9

b

16

b

25
and so on

2x

3x

4x

5x

apparent brightness b =
L_____

4πr2

It is thus possible for two very different stars to have the same

apparent brightness. It all depends on how far away the stars are.

close star
(small luminosity)

distant star
(high luminosity)

Two stars can have the same apparent brightness even if they 

have different luminosities

alternatiVe unitS
The SI units for luminosity and brightness have already 

been introduced. In practice astronomers often compare the 

brightness of stars using the apparent magnitude scale. 

A magnitude 1 star is brighter than a magnitude 3 star. This 

measure of brightness is sometimes shown on star maps. 

The magnitude scale can also be used to compare the luminosity 

of different stars, provided the distance to the star is taken into 

account. Astronomers quote values of absolute magnitude in 

order to compare luminosities on afamiliar scale.

black-boDy raDiation
Stars can be analysed as perfect emitters, or black bodies. The 

luminosity of a star is related to its brightness, surface area 

and temperature according to the Stefan–Boltzmann law. 

Wien’s law can be used to relate the wavelength at which the 

intensity is a maximum to its temperature. See page 90 for 

more details.

Example:

e.g. our sun’s temperature is 5,800k

So the wavelength at which the intensity of its radiation is at a 

maximum is λ
max

=
2.9 × 10 3
__________

5800
= 500 nm

example on luminoSity
The star Betelgeuse has a parallax angle of 7.7 × 10 3 arc 

seconds and an apparent brightness of 2.0 × 10 7 W m 2. 

Calculate its luminosity.

Distance to Betelgeuse d

=
1
p

=
1__________

7.7 × 10 3
 pc 

= 129.9 pc

= 129.9 × 3.08 × 1016 m

= 4.0 × 1018 m 

L = b × 4πd2
= 4.0 × 1031 W 
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S s

abSorption lineS
The radiation from stars is not a perfect continuous spectrum – there are particular wavelengths that are ‘missing’. 

red

wavelength

violet

bands of wavelengths 

emitted by the Sun ‘missing’ wavelength

The missing wavelengths correspond to the absorption spectra 

of a number of elements. Although it seems sensible to assume 

that the elements concerned are in the Earth’s atmosphere, this 

assumption is incorrect. The wavelengths would still be absent if 

light from the star was analysed in space. 

The absorption is taking place in the outer layers of the star. 

This means that we have a way of telling what elements exist in 

the star – at least in its outer layers. 

A star that is moving relative to the Earth will show a Doppler 

shift in its absorption spectrum. Light from stars that are 

receding will be red shifted whereas light from approaching 

stars will be blue shifted

claSSification of StarS
Different stars give out different spectra of light. This allows 

us to classify stars by their spectral class. Stars that emit 

the same type of spectrum are allocated to the same spectral 

class. Historically these were just given a different letter, but 

we now know that these different letters also correspond to 

different surface temperatures.

The seven main spectral classes (in order of decreasing

surface temperature) are O, B, A, F, G, K and M. The main 

spectral classes can be subdivided.

Class Effective surface temperature/K Colour

O 30,000–50,000 blue

B 10,000–30,000 blue-white

A 7,500–10,000 white

F 6,000–7,500 yellow-white

G 5,200–6,000 yellow

K 3,700–5,200 orange

M 2,400–3,700 red

Spectral classes do not need to be mentioned but are used in 

many text books.

Summary
If we know the distance to a star we can analyse the light from 

the star and work out:

• the chemical composition (by analysing the absorption spectrum)

• the surface temperature (using a measurement of λ
max

 and 

Wien’s law – see page 90)

• the luminosity (using measurements of the brightness and 

the distance away)

• the surface area of the star (using the luminosity, the surface 

temperature and the Stefan–Boltzmann law).

Stefan–boltzmann law
The Stefan–Boltzmann law links the total power radiated by 

a black body (per unit area) to the temperature of the black 

body. The important relationship is that 

Total power radiated ∝ T
4

In symbols we have, 

Total power radiated = σAT
4

Where

σ is a constant called the Stefan–Boltzmann constant. 

σ = 5.67 × 10 8 W m 2 K 4

A is the surface area of the emitter (in m2)

T is the absolute temperature of the emitter (in kelvin)

e.g. The radius of the Sun = 6.96 × 108 m.

Surface area = 4π r
2 
= 6.09 × 1010 m2

If temperature = 5800 K

then total power radiated = σAT
4

= 5.67 × 10 8
× 6.09 × 1018

× (58004)

= 3.9 × 1026 W

The radius of the star r is linked to its surface area, A, using 

the equation A = 4π r
2. 
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nsss

Stellar typeS anD black holeS 
The source of energy for our Sun is the fusion of hydrogen into helium. This is also true for many other stars. 

There are however, other types of object that are known to exist in the Universe.

Type of object Description

Red giant stars As the name suggests, these stars are large in size and red in colour. Since they are red, they are 

comparatively cool. They turn out to be one of the later possible stages for a star. The source of energy is 

the fusion of some elements other than hydrogen. Red supergiants are even larger.

White dwarf stars As the name suggests, these stars are small in size and white in colour. Since they are white, they are 

comparatively hot. They turn out to be one of the nal stages for some smaller mass stars. Fusion is no 

longer taking place, and a white dwarf is just a hot remnant that is cooling down. Eventually it will cease 

to give out light when it becomes sufciently cold. It is then known as a brown dwarf

Cepheid variables These are stars that are a little unstable. They are observed to have a regular variation in brightness and 

hence luminosity. This is thought to be due to an oscillation in the size of the star. They are quite rare but 

are very useful as there is a link between the period of brightness variation and their average luminosity. 

This means that astronomers can use them to help calculate the distance to some galaxies.

Neutron stars Neutron stars are the post-supernova remnants of some larger mass stars. The gravitational pressure has 

forced a total collapse and the mass of a neutron star is not composed of atoms – it is essentially composed 

of neutrons. The density of a neutron star is enormous. Rotating neutron stars have been identied as 

pulsars

Black holes Black holes are the post-supernova remnant of larger mass stars. There is no known mechanism to stop 

the gravitational collapse. The result is an object whose escape velocity is greater than the speed of light. 

See page 150.

main Sequence StarS
The general name for the creation of 

nuclei of different elements as a result 

of ssion reactions is nucleosynthesis. 

Details of how this overall reaction 

takes place in the Sun do not need to 

be recalled by SL candidates, but HL 

candidates do need this information.

One process is known as the proton–

proton cycle or p–p cycle

p

p

p p
p

p p

p p

p
p

p

p

p

n

n

n

n

n
n

p
n

γ

ν

e+

1
1step 1 H +

1
1 H → 2

1 H + 0
1

0
0e+ + ν

2
1step 2 H +

1
1 H → 

3
2 He +

0
0 γ

3
2step 3 He + 3

2 He → 
4
2 He + 2 p1

1

the proton proton cycle (p p cycle)

In order for any of these reactions to take 

place, two positively charged particles 

(hydrogen or helium nuclei) need to 

come close enough for interactions to 

take place. Obviously they will repel one 

another. 

This means that they must be at a high 

temperature.

If a large cloud of hydrogen is hot 

enough, then these nuclear reactions 

can take place spontaneously. The power 

radiated by the star is balanced by the 

power released in these reactions – the 

temperature is effectively constant. 

The star remains a stable size because 

the outward pressure of the radiation is 

balanced by the inward gravitational pull.

But how did the cloud of gas get to be 

at a high temperature in the rst place? 

As the cloud comes together, the loss 

of gravitational potential energy must 

mean an increase in kinetic energy and 

hence temperature. In simple terms the 

gas molecules speed up as they fall in 

towards the centre to form a proto-star.

Once ignition has taken place, the star 

can remain stable for billions of years. 

See page 205 for more details.

Fg

Fg

Fg
Fg

collapse of cloud

under gravity gives

molecular KE

With sucient KE,

nuclear reactions

can take place.

cloud of gas
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t hs–rss d

h–r Diagram
The point of classifying the various types of stars is to see if any patterns exist. A useful way of making this comparison is the 

Hertzsprung–Russell diagram. Each dot on the diagram represents a different star. The following axes are used to position 

the dot.

• The vertical axis is the luminosity of the star as compared with the luminosity of the Sun. It should be noted that the scale is 

logarithmic. 

• The horizontal axis a scale of decreasing temperature. Once again, the scale is not a linear one. (It is also the spectral class of 

the star OBAFGKM)

The result of such a plot is shown below.
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A large number of stars fall on a line that (roughly) goes from top left to bottom right. This line is known as the main sequence and 

stars that are on it are known as main sequence stars. Our Sun is a main sequence star. These stars are ‘normal’ stable stars – the only 

difference between them is their mass. They are fusing hydrogen to helium. The stars that are not on the main sequence can also be 

broadly put into categories.

In addition to the broad regions, lines of constant radius can be added to show the size of stars in comparison to our Sun’s radius. 

These are lines going from top left to bottom right.

3 000 eective
temperature/K

50 000

10 000
6 000

main
sequence

instability
strip

white
dwarfs

red giants

Sun
10-2 solar radius

10 2 solar radii

10 3 solar radii

maSS-luminoSity relation for main Sequence StarS
For stars on the main sequence, there is a correlation between the star's mass, M, and its luminosity, L. Stars that are brighter on 

the main sequence (i.e. higher up) are more massive and the relationship is: 

L ∝ M
3.5
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principleS
Very small parallax angles can be measured using 

satellite observations (e.g. Gaia mission) but even 

these measurement are limited to stars that are about 

100 kpc away. The essential difculty is that when we 

observe the light from a very distant star, we do not 

know the difference between a bright source that is 

far away and a dimmer source that is closer. This is the 

principal problem in the experimental determination 

of astronomical distances to other galaxies.

When we observe another galaxy, all of the stars 

in that galaxy are approximately the same distance 

away from the Earth. What we really need is a light 

source of known luminosity in the galaxy. If we had 

this then we could make comparisons with the other 

stars and judge their luminosities. In other words we 

need a ‘standard candle’ – that is a star of known 

luminosity. Cepheid variable stars provide such a 

‘standard candle’.

A Cepheid variable star is quite a rare type of star. 

Its outer layers undergo a periodic compression and 

contraction and this produces a periodic variation in 

its luminosity.

A Cepheid variable star undergoes 

periodic compressions and 

contractions. increased

luminosity

lower 

luminosity

These stars are useful to astronomers because the 

period of this variation in luminosity turns out to 

be related to the average absolute magnitude of the 

Cepheid. Thus the luminosity of a Cepheid can be 

calculated by observing the variations in brightness. 

example
A Cepheid variable star has a period of 10.0 days and apparent peak brightness of 6.34 × 10 11 W m 2

The luminosity of the Sun is 3.8 × 1026 W. Calculate the distance to the Cepheid variable in pc.

Using the luminosity–period graph (above)

⇒ peak luminosity = 103.7 × L
sun

= 5012 × 3.8 × 1026 = 1.90 × 1030 W

L = b × 4πr2

∴ r = √
____

L____
4πb

= √
_________________

1.90 × 1030
____________________
4 × π × 6.34 × 10 11

= 4.88 × 1019 m

= 4.88 × 1019
___________
3.08 × 1016

pc

= 1590 pc

mathematicS
The process of estimating the distance to a galaxy (in which the 

individual stars can be imaged) might be as follows:

• Locate a Cepheid variable in the galaxy.

• Measure the variation in brightness over a given period of time.

• Use the luminosity–period relationship for Cepheids to estimate the 

average luminosity.

• Use the average luminosity, the average brightness and the inverse 

square law to estimate the distance to the star.
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after the main Sequence
The mass–luminosity relation (page 197) can be used to compare 

the amount of time different mass stars take before the hydrogen 

fuel is used. Consider a star that is 10 times more massive than our 

Sun. This means that the luminosity of the larger star will be (10)3.5

= 3,162 times more luminous that our Sun. Since the source of 

this luminosity is the mass of hydrogen in the star, then the larger 

star effectively has 10 times more ‘fuel’ but is using the fuel at 

more than 3000 times the rate. The more massive star will nish 

its fuel in 1___
300

 of the time. A star that has more mass exists for a 

shorter amount of time.

A star cannot continue in its main sequence state forever. It is 

fusing hydrogen into helium and at some point hydrogen in 

the core will become rare. The fusion reactions will happen 

less often. This means that the star is no longer in equilibrium 

and the gravitational force will, once again, cause the core to 

collapse.

This collapse increases the temperature of the core still  

further and helium fusion is now possible. The net result is for 

the star to increase massively in size – this expansion means 

that the outer layers are cooler. It becomes a red giant star.

star runs out 

of hydrogen 

∴ collapses

further

helium fusion possible 

due to increased

temperature 

∴ expansion

red 

giant star

If it has sufcient mass, a red giant can continue to fuse  

higher and higher elements and the process of nucleosynthesis 

can continue.

newly formed red giant star

400 million km dormant hydrogen-

burning shell

helium-burning

shell

carbon–oxygen core

core of star

nucleosynthesis

old, high-mass red giant star

700 million km hydrogen-burning shell

helium-burning shell

carbon-burning shell

neon-burning shell

oxygen-burning shell

silicon-burning shell

iron core

This process of fusion as a source of energy must come to an 

end with the nucleosynthesis of iron. The iron nucleus has one 

of the greatest binding energies per nucleon of all nuclei. In 

other words the fusion of iron to form a higher mass nucleus 

would need to take in energy rather than release energy. The 

star cannot continue to shine. What happens next is outlined 

on the following page.
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poSSible fateS for a Star (after reD giant 

phaSeS)
Page 199 showed that the red giant phase for a star must eventually 

come to an end. There are essentially two possible routes with 

different nal states. The route that is followed depends on 

the initial mass of the star and thus the mass of the remnant 

that the red giant star leaves behind: with no further nuclear 

reactions taking place gravitational forces continue the 

collapse of the remnant. An important ‘critical’ mass is called 

the Chandrasekhar limit and it is equal to approximately 

1.4 times the mass of our Sun. Below this limit a process 

called electron degeneracy pressure prevents the further 

collapse of the remnant.

If a star has a mass less than 4 Solar masses, its remnant 

will be less than 1.4 Solar masses and so it is below the 

Chandrasekhar limit. In this case the red giant forms a 

planetary nebula and becomes a white dwarf which 

ultimately becomes invisible. The name ‘planetary nebula’ is 

another term that could cause confusion. The ejected material 

would not be planets in the same sense as the planets in our 

Solar System.

white dwarf

low-mass star
(e.g. type G)

red giant

planetary nebula

If a star is greater than 4 Solar masses, its remnant will 

have a mass greater than 1.4 Solar masses. It is above the 

Chandrasekhar limit and electron degeneracy pressure is not 

sufcient to prevent collapse. In this case the red supergiant 

experiences a supernova. It then becomes a neutron star or 

collapses to a black hole. The nal state again depends on mass.

black hole

larger-mass 
star (e.g. type 
A, B, O) red supergiant

large-mass 
supernova

neutron star

very large-mass 
supernova

A neutron star is stable due to neutron degeneracy pressure. 

It should be emphasized that white dwarfs and neutron stars 

do not have a source of energy to fuel their radiation. They 

must be losing temperature all the time. The fact that these 

stars can still exist for many millions of years shows that the 

temperatures and masses involved are enormous. The largest 

mass a neutron star can have is called the Oppenheimer–

Volkoff limit and is 2–3 Solar masses. Remnants above this 

limit will form black holes.

h – r Diagram interpretation
All of the possible evolutionary paths for stars that have been 

described here can be represented on a H – R diagram. A 

common mistake in examinations is for candidates to imply 

that a star somehow moves along the line that represents the 

main sequence. It does not. Once formed it stays at a stable 

luminosity and spectral class – i.e. it is represented by one 

xed point in the H – R diagram.

main sequence

evolution of a low-mass star

to white dwarf

ejection of 

‘planetary’ nebula

red giant 

phase

surface temperature
lu

m
in

os
it

y

main sequence

evolution of a high-mass star

red giant 

phase

to black hole / neutron star

surface temperature
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pulSarS anD quaSarS
Pulsars are cosmic sources of very weak radio wave energy 

that pulsate at a very rapid and precise frequency. These have 

now been theoretically linked to rotating neutron stars. A 

rotating neutron star would be expected to emit an intense 

beam of radio waves in a specic direction. As a result of 

the star’s rotation, this beam moves around and causes the 

pulsation that we receive on Earth.

Quasi-stellar objects or quasars appear to be point-like sources 

of light and radio waves that are very far away. Their red 

shifts are very large indeed, which places them at the limits 

of our observations of the Universe. If they are indeed at 

this distance they must be emitting a great deal of power for 

their size (approximately 1040 W!). The process by which this 

energy is released is not well understood, but some theoretical 

models have been developed that rely on the existence of 

super-massive black holes. The energy radiated is as a result of 

whole stars ‘falling’ into the black hole.
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expanSion of the uniVerSe
If a galaxy is moving away from 

the Earth, the light from it will  

be red shifted. The surprising  

fact is that light from almost all  

galaxies shows red shifts –  

almost all of them are moving  

away from us. The Universe is  

expanding.

At rst sight, this expansion  

seems to suggest that we are in  

the middle of the Universe, but  

this is a mistake. We only seem  

to be in the middle because it  

was we who worked out the  

velocities of the other galaxies.  

If we imagine being in a  

different galaxy, we would get  

exactly the same picture of the  

Universe.

A good way to picture this expansion is to think of the Universe as a sheet of 

rubber stretching off into the distance. The galaxies are placed on this huge 

sheet. If the tension in the rubber is increased, everything on the sheet moves 

away from everything else. 

the uniVerSe in the  

paSt – the big bang
If the Universe is currently expanding, at 

some time in the past all the galaxies would 

have been closer together. If we examine 

the current expansion in detail we nd that 

all the matter in the observable universe 

would have been together at the SAME 

point approximately 15 billion years ago.

This point, the creation of the Universe, 

is known as the Big Bang. It pictures all 

the matter in the Universe being crushed 

together (very high density) and being very 

hot indeed. Since the Big Bang, the Universe 

has been expanding – which means that, on 

average, the temperature and density of the 

Universe have been decreasing. The rate of 

expansion would be expected to decrease

as a result of the gravitational attraction 

between all the masses in the Universe. 

Note that this model does not attempt to 

explain how the Universe was created, or by 

Whom. All it does is analyse what happened 

after this creation took place. The best way 

to imagine the expansion is to think of the 

expansion of space itself rather than the 

galaxies expanding into a void. The Big Bang 

was the creation of space and time. Einstein’s 

theory of relativity links the measurements 

of space and time so properly we need to 

imagine the Big Bang as the creation of space 

and time. It does not make sense to ask 

about what happened before the Big Bang, 

because the notion of before and after (i.e. 

time itself) was created in the Big Bang.

As far as we are concerned, most galaxies 
are moving away from us.

A

B C

D

vA vD

vCvB

us (at rest)

A

C

D

vA

vus

vD

vC

B (at rest)

Any galaxy would see all the other galaxies 
moving away from it.

As the section of rubber sheet expands, everything moves away from everything else.

coSmic microwaVe 

backgrounD raDiation
A further piece of evidence for the Big 

Bang model came with the discovery of 

the Cosmic microwave background 

(CMB) radiation by Penzias and Wilson. 

They discovered that microwave radiation 

was coming towards us from all directions

in space. The strange thing was that the 

radiation was the same in all directions

(isotopic) and did not seem to be linked 

to a source. Further analysis showed that 

this radiation was a very good match 

to theoretical black-body radiation 

produced by an extremely cold object – a 

temperature of just 2.73 K. 

This is in perfect agreement with the 

predictions of Big Bang. There are two 

ways of understanding this.

1. All objects give out electromagnetic 

radiation. The frequencies can be 

predicted using the theoretical 

model of black-body radiation. The 

background radiation is the radiation 

from the Universe itself which has 

now cooled down to an average 

temperature of 2.73 K.

2. Some time after the Big Bang, 

radiation became able to travel through 

the Universe (see page 210 for details). 

It has been travelling towards 

us all this time. During this time 

the Universe has expanded – this 

means that the wavelength of this 

radiation will have increased (space 

has stretched). Seepage210 for 

anisotropies in the CMB.
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DiStributionS of galaxieS

Galaxies are not distributed randomly throughout space. They tend to be found 

clustered together. For example, in the region of the Milky Way there are twenty  

or so galaxies in less than 2.5 million light years.

The Virgo galactic cluster (50 million light years away from us) has over 1,000 galaxies 

in a region 7 million light years across. On an even larger scale, the galactic clusters 

are grouped into huge superclusters of galaxies. In general, these superclusters often 

involve galaxies arranged together in joined ‘laments’ (or bands) that are arranged as 

though randomly throughout empty space. 

motion of galaxieS

As has been seen on page 201 it is a surprising observational fact that the vast 

majority of galaxies are moving away from us. The general trend is that the more 

distant galaxies are moving away at a greater speed as the Universe expands. This 

does not, however, mean that we are at the centre of the Universe – this would be 

observed wherever we are located in the Universe.

As explained on page 201, a good way to imagine this expansion is to think of space 

itself expanding. It is the expansion of space (as opposed to the motion of the galaxies 

through space) that results in the galaxies’ relative velocities. In this model, the red shift 

of light can be thought of as the expansion of the wavelength due to the ‘stretching’ 

of space.
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light wave as emitted from a distant galaxy

light wave when it 

arrives at Earth

mathematicS

If a star or a galaxy moves away from us, then the wavelength 

of the light will be altered as predicted by the Doppler effect (see 

page 102). If a galaxy is going away from the Earth, the speed 

of the galaxy with respect to an observer on the Earth can be 

calculated from the red shift of the light from the galaxy. As long 

as the velocity is small when compared with the velocity of light, 

a simplied red shift equation can be used.

Z =
∆λ___
λ

0

≈
v

c

Where 

∆λ = change in wavelength of observed light (positive if 

wavelength is increased) 

λ
0
= wavelength of light emitted

v = relative velocity of source of light

c = speed of light

Z = red shift.

Examle
A characteristic absorption line often seen in stars is due to 

ionized helium. It occurs at 468.6 nm. If the spectrum of a star 

has this line at a measured wavelength of 499.3 nm, what is the 

recession speed of the star?

Z =
∆λ___
λ

0

=
(499.3 – 468.6)_______________

468.6

= 6.55 × 10 2

∴ v = 6.55 × 10 2 × 3 × 108 m s 1

= 1.97 × 107 m s 1
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the coSmic Scale factor (R)

Page 202 shows how the Doppler red shift equation, = Δλ___
λ

0

≈
v
c , can be used to calculate the recessional velocity, v, of certain 

galaxies. This equation can only be used when v ≪ c or in other words, the recessional velocity, v, has to be small in comparison to 

the speed of light, c. There are however plenty of objects in the night sky (e.g. quasars) for which the observed red shift, z, is greater 

than 1.0. This implies that their speed of recession is greater than the speed of light. In these situations it is helpful to consider a 

quantity called the cosmic scale factor (R). 

As introduced on page 201, the expansion of the Universe is best pictured as the expansion of space itself. The expansion of the 

Universe means that a measurement undertaken at some time in the distant past, for example the wavelength of light emitted by an 

object 10 million years ago, will be stretched and will be recorded as a larger value when measured now. All measurement will be 

stretched over time and this can be considered as a rescaling of the Universe (the Universe getting bigger). 

The cosmic scale factor, R, is a way of quantifying the expansion that has taken place. In the above example, if the wavelength 

was emitted 10 million years ago with wavelength λ
0
 when the scale factor was R

0
, the wavelength measured today would have 

increased by Δλ to a larger value λ (λ = λ
0 
+ Δλ). This is because the cosmic scale factor has increased by ΔR (to the larger value  

R = R
0
+ ΔR). All measurements will have increased by the ratio, R

R
0

 . The ratio of the measured wavelengths, λ

λ
0

, is equal to the 

ratio of the cosmic scale factors, R

R
0

, so the red shift ratio, z is given by:

z =
Δλ____
λ

0

= 
λ λ

0_____
λ

0

=
λ___
λ

0

1 = 
R___
R

0

1

or z = 
R___
R

0

- 1

So a measured red shift of 4 means that R

R
0

= 5. If we consider R to be the present ‘size’ of the observable Universe, then the light 

must have been emitted when the Universe was one fth of its current size. 

experimental obSerVationS
Although the uncertainties are large, the general trend for 

galaxies is that the recessional velocity is proportional to the 

distance away from Earth. This is Hubble’s law.
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Mathematically this is expressed as 

v ∝ d

or

v = H
0

d

where H
0
 is a constant known as the Hubble constant. The 

uncertainties in the data mean that the value of H
0
 is not 

known to any degree of precision. The SI units of the Hubble 

constant are s 1, but the unit of km s 1 Mpc 1 is often used.

hiStory of the uniVerSe
If a galaxy is at a distance x, then Hubble’s law predicts its 

velocity to be H
0
x. If it has been travelling at this constant 

speed since the beginning of the Universe, then the time that 

has elapsed can be calculated from 

Time =
distance________
speed

=
x____

H
0
x

=
1___
H

0

This is an upper limit for the age of the Universe. The 

gravitational attraction between galaxies predicts that the 

speed of recession decreases all the time.

now
time

size of

observable

universe

R

1

H
0

T ≈
1

H
0

h’s  d s s 



204 O p t i O n  D  –  A s t r O p h y s i c s

t  vs

SupernoVae anD the accelerating uniVerSe
Supernovae are catastrophic explosions that can occur in the development of some stars (see page 200). Supernovae are rare events 

(the last one to occur in our galaxy took place in 1604) but the large number of stars in the Universe means that many have been 

observed. An observer on the Earth sees a rapid increase in brightness (hence the word ‘nova’ = new star) which then diminishes 

over a period of some weeks or months. Huge amounts of radiated energy are emitted in a short period of time and, at its peak, the 

apparent brightness of a single supernova often exceeds many local stars or individual galaxies. 

Supernovae have been categorized into two different main types (see page 207 for more details) according to a spectral analysis 

of the light that they emit. The light from a type II supernova indicates the presence of hydrogen (from the absorption spectra) 

whereas there is no hydrogen in a type I supernova. There are further subdivisions of these types (Ia, Ib, etc.) based on different 

aspects of the light spectrum.

Type Ia supernovae are explosions involving white dwarf stars. When these events take place, the amount of energy released can 

be predicted accurately and these supernovae can be used as ‘standard candles’. By comparing the known luminosity of a type Ia 

supernova and its apparent brightness as observed in a given galaxy, a distance measurement to that galaxy can be calcuated. This 

technique can be used with galaxies up to approximately 1,000 Mpc away.

The expanding Universe (which is consistent with the Big Bang model) means that that the cosmic scale factor, R, is increasing. As 

a result of gravitational attraction, we might expect the rate at which R increases to be slowing down. Analysis of a large number 

of type Ia supernovae has, however, provided strong evidence that not only is the cosmic scale factor, R, increasing but the rate 

at which it increases is getting larger as time passes. In other words the expansion of the Universe is accelerating. The evidence 

from type Ia supernovae identies this effect from a time when the universe was approximately 2
3
 of its current size. Note that this 

acceleration is different to the very rapid period of expansion of the early Universe which is called ination.

The mechanisms that cause an accelerating Universe are not fully understood but must involve an outward accelerating force to 

counteract the inward gravitational pull. There must also be a source of energy which has been given the name dark energy

(see page 212).

ination

1st stars

13.7 billion years

dark ages

development of

galaxies

dark energy

accelerated expansion

Source: NASA/WMAP Science Team
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the JeanS criterion

As seen on page 196, stars form out of interstellar clouds of 

hydrogen, helium and other materials. Such clouds can exist 

in stable equilibrium for many years until an external event 

(e.g. a collision with another cloud or the inuence of another 

incident such as a supernova) starts the collapse. At any given 

point in time, the total energy associated with the gas cloud 

can be thought of as a combination of:

• The negative gravitational potential energy, E
P
, which 

the cloud possesses as a result of its mass and how it is 

distributed in space. Important factors are thus the mass 

and the density of the cloud. 

• The positive random kinetic energy, E
K
, that the particles 

in the cloud possess. An important factor is thus the 

temperature of the cloud.

The cloud will remain gravitationally bound together if  

E
P
+ E

K
< zero. Using this information allows us to predict 

that the collapse of an interstellar cloud may begin if its mass 

is greater than a certain critical mass, M
J
 . This is the Jeans 

criterion. For a given cloud of gas, M
J
 is dependent on the 

cloud’s density and temperature and the cloud is more likely 

to collapse if it has:

• large mass 

• small size

• low temperature.

In symbols, the Jeans criterion is that collapse can start if  

M > M
J

nuclear fuSion

A star on the main sequence is fusing hydrogen nuclei to 

produce helium nuclei. One process by which this is achieved 

is the proton–proton chain as outlined on page 196. This is 

the predominant method for nuclear fusion to take place in 

small mass stars (up to just above the mass of our Sun). An 

alternative process, called the CNO (carbon–nitrogen–oxygen) 

process takes place at higher temperatures in larger mass stars. 

In this reaction, carbon, nitrogen and oxygen are used as 

catalysts to aid the fusion of protons into helium nuclei. One 

possible cycle is shown below: 

1H

1H
1H

1H
4He

12C

13C

15N

14N

13N

15O

γ

γ
γ

proton

START

neutron

positron

neutrino

gamma rayγ

ν

ν

time Spent on the main Sequence

For so long as a star remains on the main sequence, hydrogen ‘burning’ is the source of energy that allows the star to remain in 

hydrostatic equilibrium (see page 192) and have a constant luminosity L. A star that exists on the main sequence for a time T
MS

must in total radiate an energy E given by:

E = L × T
MS

This energy release comes from the nuclear synthesis that has taken place over its lifetime. A certain fraction f of the mass of the 

star M has been converted into energy according to Einstein’s famous relationship:

E = f × Mc2

∴ L × T
MS 

= f × Mc2

T
MS

= 
f × Mc2

_______
L

But the mass–luminosity relationship applies, L ∝ M3.5

∴ T
MS

∝
M____

M3.5

∴ T
MS

∝ M 2.5

Thus the higher the mass of a star, the shorter the lifetime that it spends on the main sequence

Time on main sequence for star A____________________________
Time on main sequence for star B

= (Mass of star A____________
Mass of star B )

2.5

= (Mass of star B____________
Mass of star A)

2.5

For example our Sun is expected to have a main sequence lifetime of approximate 1010 years. How long would a star with 100 

times its mass be expected to last?

Time on MS for 100 solar mass star = 1010 × ( 1____
100)

2.5

= 105 years

n s –  Js HL
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nucleoSyntheSiS off the main Sequence
For so long as a star remains on the main sequence, hydrogen 

‘burning’ is the source of energy that allows the star to continue 

emitting energy whilst remaining in a stable state. More and 

more helium exists in the core. A nuclear synthesis involving 

helium (helium ‘burning’) does release energy (since the binding 

energy per nucleon of the products is greater than that of the 

reactants) but can only take place at high temperatures. 

For high mass stars, the helium burning process can begin 

gradually and spread throughout the core whereas in small 

mass stars this process starts suddenly. Whatever the mass of 

the star, a new equilibrium state is created: the red giant or red 

supergiant phase (see page 200).

A common process by which helium is converted is a series of 

nuclear reactions called the triple alpha process in which 

carbon is produced. 

1. Two helium nuclei fuse into a beryllium nucleus (and a 

gamma ray), releasing energy.

2

4He + 2

4He → 4

8Be + γ

2. The beryllium nucleus fuses with another helium nucleus 

to produce a carbon nucleus (and a gamma ray), releasing 

energy.

4

8Be + 2

4He → 6

12C + γ

3. Some of the carbon produced in the triple alpha process 

can go on to fuse with another helium nucleus to produce 

oxygen. Again this process releases energy: 

6

12C + 2

4He → 8

16O + γ

In high and very high mass stars, gravitational contraction means 

that the temperature of the core can continue to rise and more 

massive nuclei can continue to be produced. These reactions all 

involve the release of energy. Typical reactions include: 

Production of neon: 6

12C + 6

12C → 10

20Ne + 2

4He

Production of magnesium: 6

12C + 6

12C → 12

24Mg + γ

Production of oxygen: 6

12C + 6

12C → 8

16O + 2 2

4He

In addition if the temperatures are high enough, neon and 

oxygen burning can occur: 

10

20Ne + γ → 8

16O + 2

4He

10

20Ne + 2

4He → 12

24Mg + γ

Production of sulfur: 8

16O + 8

16O → 16

32S + γ

Many reactions are possible and other heavy nuclei such as 

silicon and phosphorus are also produced. Some of these 

alternative nuclear reactions also produce neutrons, which can 

easily be captured by other nuclei to form new isotopes. This 

process of neutron capture is explored further below.  

In very high mass stars, silicon burning can also take place 

which results in the formation of iron, 26

56Fe. As explained on 

page 199, iron has one of the highest binding energies per 

nucleon and represents the largest nucleus that can be created 

in a fusion process that releases energy. Heavier nuclei can be 

acquired, but the reactions require an energy input.

nuclear SyntheSiS of heaVy elementS – neutron capture
Many of the reactions that take place in the core of stars also 

involve the release of neutrons. Since neutrons are without 

any charge, it is easy for them to interact with other nuclei that 

are present in the star. When a nucleus captures a neutron, the 

resulting nucleus is said to be neutron rich. Given enough 

time, most of these neutron-rich nuclei would undergo beta 

decay. In this process, the neutron changes into a proton, 

emitting an electron and an antineutrino:

0

1n → 1

1p + 1

0β + v

Z

AX + 0

1n → Z

A + 1X → Z + 1

A + 1Y + 1

0β + v

This is known as slow neutron capture or the s-process. The 

overall result of the s-process is a new element. Typically the 

s-process takes place during the helium burning stage of a red 

giant star. Typically this means that elements that are heavier 

than helium but lighter than iron are able to be created.

The alternative process, rapid neutron capture or the 

r-process, takes place when the neutrons are present in 

such vast numbers that there is not sufcient time for the 

neutron-rich nuclei to undergo beta decay before several more 

neutrons are captured. The result is for very heavy nuclei 

to be created. Typically the r-process takes place during the 

catastrophic explosion that is a supernova. Elements that are 

heavier than iron, such as uranium and thorium, can only be 

created in this way at very high temperatures and densities.
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SupernoVae 
Supernovae are among the most gigantic explosions in the Universe (see page 200). The two categories of supernova are based 

on their light curves – a plot of how their brightness varies with time and a spectral analysis of the light that they emit. Type I 

supernovae quickly reach a maximum brightness (and an equivalent luminosity of 1010 Suns) which then gradually decreases over 

time. Type II supernovae often have lower peak luminosities (equivalent to, say, 109 Suns).
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Supernovae types are distinguish by analysis of their light spectra. All type I supernovae do not include the hydrogen spectrum in 

the elements identied and the different subdivisions (Ia, Ib and Ic) are based on a more detailed spectral analysis:

• Type Ia shows the presence of singly ionized silicon.

• Type Ib shows the presence of non-ionized helium.

• Type Ic does not show the presence of helium.

All type II supernovae show the presence of hydrogen. The different subdivisions (IIP, IIL, IIn and IIb) again depend on the 

presence, or not, of different elements.

The reasons for these differences are the different mechanisms that are taking place:

Supernova Type Ia Supernova Type II

Spectra Does not show hydrogen but does show singly ionized 

silicon.

Shows hydrogen.

Cause White dwarf exploding. Large mass red giant star collapsing.

Context Binary star system with white dwarf and red giant 

orbiting each other.

Large star (greater than 8 Solar masses) at the end 

of its lifetime, fusing lighter elements up to the 

production of iron.

Process The gravity eld of the white dwarf star attracts 

material from the red giant star, thus increasing the 

mass of the white dwarf.

When the star runs out of fuel, the iron centre core 

cannot release any further energy by nuclear fusion. 

The star collapses under its own gravity forming a 

neutron star. 

Explosion The extra mass gained by the white dwarf takes the 

total mass of the star beyond the Chandrasekhar 

limit (1.4 Solar masses) for a white dwarf. Electron 

degeneracy pressure is no longer sufcient to halt 

the gravitational collapse. Nuclear fusion of heavier 

elements (up to iron) starts and the resulting sudden 

release of energy causes the star to explode with the 

matter being distributed throughout space.

Electron degeneracy pressure is not sufcient to halt 

the gravitational collapse of the core, but neutron 

degeneracy pressure is and the core becomes a 

stable and rigid neutron star. The rest of the infalling 

material bounces off the core creating a shock wave 

moving outwards. This causes all of the outer layers to 

be ejected.
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the coSmological principle
The cosmological principle is a pair of assumptions about the 

structure of the Universe upon which current models are based. 

The two assumptions are that the Universe, providing one only 

considers the large scale structures in the Universe, is isotropic

and homogeneous

An isotropic universe is one that looks the same in every 

direction – no particular direction is different to any other. From 

the perspective of an observer on Earth, this appears to be a 

true statement about the large scale structure of the universe, 

but the assumption does not only apply to observers on the 

Earth. In an isotropic universe all observers, wherever they 

are in the universe, are expected to see the same basic random 

distribution of galaxies and galaxy clusters as we do on Earth 

and this is true in whatever direction they observe.

A homogeneous universe is one where the local distribution 

of galaxies and galaxy clusters that exists in one region of the 

universe turns out to be the same distribution in all regions of 

the universe. Provided one is considering a reasonably large 

section of space (e.g. a sphere of radius equal to several hundreds 

of Mpc), then the number of galaxies in that volume of space 

will be effectively the same wherever we choose to look in 

the universe. Recent discoveries of apparently very large scale 

structures in the Universe cause some astrophysicists to question 

the validity of the cosmological principle. 

Einstein used the cosmological principle to develop a model of 

the Universe in which the Universe was static. He did this by 

proposing that the gravitational attraction between galaxies 

would be balanced by a yet-to-be-discovered cosmological 

repulsion. Subsequent analysis of the equations of general 

relativity showed that, if the cosmological principle is correct, the 

Universe must be non-static. Hubble’s observational discovery 

of the expansion of the Universe and the existence of CMB 

has meant that many physicists now agree that the Universe is 

non-static based around the Big Bang model of an expanding 

universe. The cosmological principle is also linked to three 

possible models for the future of the Universe (see page 211).

rotation curVeS – mathematical moDelS
The stars in a galaxy rotate around their common centre of 

mass. Different models can be used to predict how the speed 

varies with distance from the galactic centre.

1. Near the galactic centre

A simple model to explain the different speeds of rotation of stars 

near the galactic centre assumes that density of the galaxy near 

its centre, ρ, is constant. A star of mass m feels a resultant force 

of gravitational attraction in towards the centre. The value of this 

resultant force is the same as if the total mass M of all the stars that 

are closer to the galactic centre were concentrated in the centre. An 

important point to note is that the net effect of all the stars that are 

orbiting at radius that is greater than r sums to zero.

density of stars
in galactic centre = ρ

mass of
star, m

radius r

speedν

ν

mM

r

stars outside r have

overall no net eect

stars inside r have

eect of total mass M

at centre

The star at a given distance r from the centre will orbit in 

circular motion because its centripetal force is provided by the 

gravitational attraction:

GMm_
r

2
= mv

2_
r

∴ v
2 = GM_

r

The total mass of stars that orbit closer than of this star, M, is 

given by

M = volume × density = 4
3
πr

3 × ρ

v
2 =

G
4
3
πr

3
ρ

_
r

=
4πGρ_

3
r

2

∴ v = √
_____
4πGρ_

3
r

i.e. v α r

2. Far away from the galactic centre

Far away from the galactic centre, observations of the number 

of visible stars show that the effective density of the galaxy has 

reduced so much that individual stars at these distances can 

be considered to be freely orbiting the central mass and to be 

unaffected by their neighbouring stars. In this situation, 

v
2 = GM_

r
  where M is the mass of the galaxy

i.e. v α √1
r

Comparisons with observations of real galaxies show good 

agreement with mathematical model (1) but no agreement 

withmathematical model (2). The proposed solution is 

discussed on page 209.
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machoS, wimpS anD other theorieS
Astrophysicists are attempting to come up with theories to 

explain why there is so much dark matter and what it consists 

of. There are a number of possible theories:

• The matter could be found in Massive Astronomical 

Compact Halo Objects or MACHOs for short. There is some 

evidence that lots of ordinary matter does exist in these 

groupings. These can be thought of as low-mass ‘failed’ stars 

or high-mass planets. They could even be black holes. These 

would produce little or no light. Evidence suggests that these 

could only account for a small proportion.

• There could be new particles that we do not know about. 

These are the Weakly Interacting Massive Particles. Many 

experimenters around the world are searching for these  

so-called WIMPs

• Perhaps our current theories of gravity are not completely 

correct. Some theories try to explain the missing matter as 

simply a failure of our current theories to take everything 

into account.

eViDence for Dark matter
As shown above, observed rotation curves for real galaxies 

agree with theoretical models within the galactic centre (v α r) 

but the orbital velocity of stars is not observed to decrease with 

distance away from the centre as would be expected. Instead, 

the orbital velocity is roughly constant whatever the radius. If 

the orbital velocity v of a star is constant at different values of 

radius, then 

since v2
=

GM_
r

M_
r
= constant or M α r

Thus the total mass that is keeping the star orbiting in its galaxy 

must be increasing with distance from the galactic centre. This is 

certainly not true of the visible mass (the stars emitting light) 

that we can see so the suggestion is that there must be dark 

matter. In this situation it would have to be concentrated 

outside the galactic centre forming a halo around the galaxy. 

Further evidence suggests that only a very small amount of this 

matter could be imagined to be made up of the protons and 

neutrons that constitute ordinary, or baryonic, matter.

Dark matter:

• gravitationally attracts ordinary matter 

• does not emit radiation and cannot be inferred from its 

interactions 

• is unknown in structure

• makes up the majority of the Universe with less than 5% of 

the Universe made up of ordinary baryonic matter.

rotation curVeS
Galaxies rotate around their centre of mass and the speeds 

of this rotation can be calculated for individual stars from an 

analysis of the star’s spectra. A rotation curve for a galaxy 

show how this orbital speed varies with distance from the 

galactic centre. Most galaxies show: 

• an initial linear increase in orbital velocity with distance 

within the galactic centre

• a at or slightly increasing curve showing a roughly constant 

speed of rotation away from the galactic centre.
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the hiStory of the uniVerSe
We can ‘work backwards’ and imagine the process that took place soon after the Big Bang. 

• Very soon after the Big Bang, the Universe must have been very hot.

• As the Universe expanded it cooled. It had to cool to a certain temperature before atoms and molecules could be formed.

• The Universe underwent a short period of huge expansion (Ination) that would have taken place from about 10 36 s after the  

Big Bang to 10 32 s.

Time What is happening Comments

10 45 s → 10 36 s Unication of forces This is the starting point.

10 36 s → 10 32 s Ination A rapid period of expansion – the so-called inationary epoch. The reasons for this 

rapid expansion are not fully understood.

10 32 s → 10 5 s Quark–lepton era Matter and antimatter (quarks and leptons) are interacting all the time. There is 

slightly more matter than antimatter.

10 5 s → 10 2 s Hadron era At the beginning of this short period it is just cool enough for hadrons (e.g. 

protons and neutrons) to be stable.

10 2 s → 103 s Nucleosynthesis During this period some of the protons and neutrons have combined to form helium 

nuclei. The matter that now exists is the ‘small amount’ that is left over when matter 

and antimatter have interacted.

103 s → 3 × 105

years

Plasma era 

(radiation era)

The formation of light nuclei has now nished and the Universe is in the form of a 

plasma with electrons, protons, neutrons, helium nuclei and photons all interacting.

3 × 105 years →

109 years

Formation of atoms At the beginning of this period, the Universe has become cool enough for the rst atoms 

to exist. Under these conditions, the photons that exist stop having to interact with 

the matter. It is these photons that are now being received as part of the background 

microwave radiation. The Universe is essentially 75% hydrogen and 25% helium.

109 years → now Formation of stars, 

galaxies and galactic 

clusters

Some of the matter can be brought together by gravitational interactions. If this 

matter is dense enough and hot enough, nuclear reactions can take place and stars 

are formed.

coSmic Scale factor anD temperature
The expansion of the Universe means that the wavelength of 

any radiation that has been emitted in the past will be ‘stretched’ 

over time (see page 202). Thus the radiation that was emitted 

approximately 12 billion years ago (shortly after the Big Bang) 

at very short wavelengths is now being received as much longer 

microwaves – the CMB radiation. 

The spectrum of CMB radiation received corresponds to black-

body radiation at a temperature of 2.73 K. The calculation uses 

Wien’s law to link the peak wavelength, λ
max

, of the radiation to 

the temperature, T, of the black body in kelvins:

λ
max

= 
2.9 × 10 3
__________

T

λ
max

α 
1
T

When the radiation was emitted the temperature of the 

universe was much hotter, the cosmic scale factor, R, was much 

smaller and λ
max

 was also proportionally much smaller. 

Since the stretching of the Universe is the cause of the 

change in wavelength, then the ratio of cosmic scale factors 

at two different times must be the same as the ratio of peak 

wavelengths so 

λ
max

α R

∴
1
T

α R or T α
1
R
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fluctuationS in cmb
The cosmic microwave background radiation (CMB) is essentially 

isotropic (the same in all directions). This implies that the matter 

in the early Universe was uniformly distributed throughout 

space with no random temperature variations at all. If this was 

precisely the case then the development of the Universe would be 

expected to be absolutely identical everywhere and matter would 

be uniformly distributed throughout the Universe – it would be 

without any structure. We know, however, that matter is not 

uniformly distributed as it is concentrated into stars and galaxies.

Further analysis of the CMB reveals tiny uctuations 

(anisotropies) in the temperature distribution of the early 

Universe in different directions. These temperature variations 

are typically a few µK compared with the background effective 

temperature of 2.73 K. The diagram right is an enhanced 

projection which highlights the minor observed variations 

in the CMB (with the effects of our own galaxy removed). 

Just like a map includes all the countries of the world, this 

projection shows the variation in received CMB from the 

wholeUniverse.

Variation in CMB as observed by the Wilkinson Microwave 

Anisotropy Probe (WMAP)

The minute differences in temperature imply minor differences 

in densities, which allow structures to be developed as the 

Universe expands.
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future of the uniVerSe (without Dark

energy)
If the Universe is expanding at the moment, what is it going 

to do in the future? As a result of the Big Bang, other galaxies 

are moving away from us. If there were no forces between 

the galaxies, then this expansion could be thought of as being 

constant.

now

1
current rate 

of expansion

time

co
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The expansion of the Universe cannot, however, have been 

uniform. The force of gravity acts between all masses. This 

means that if two masses are moving apart from one another 

there is a force of attraction pulling them back together. This 

force must have slowed the expansion down in the past. What 

it is going to do in the future depends on the current rate of 

expansion and the density of matter in the Universe.
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An open Universe is one that continues to expand forever. The 

force of gravity slows the rate of recession of the galaxies down 

a little bit but it is not strong enough to bring the expansion to a 

halt. This would happen if the density in the Universe were low.

A closed Universe is one that is brought to a stop and then 

collapses back on itself. The force of gravity is enough to bring 

the expansion to an end. This would happen if the density in 

the Universe were high.

A at Universe is the mathematical possibility between open 

and closed. The force of gravity keeps on slowing the expansion 

down but it takes an innite time to get to rest. This would 

only happen if the Universe were exactly the right density. One 

electron-positron pair more, and the gravitational force would 

be a little bit bigger. Just enough to start the contraction and 

make the Universe closed.

critical DenSity, ρ
c

The theoretical value of density that would create a at 

Universe is called the critical density, ρ
c
. Its value is not 

certain because the current rate of expansion is not easy to 

measure. Its order of magnitude is 10 26 kg m 3 or a few proton 

masses every cubic metre. If this sounds very small remember 

that enormous amounts of space exist that contain little or no 

mass at all.

The density of the Universe is not an easy quantity to measure. 

It is reasonably easy to estimate the mass in a galaxy by 

estimating the number of stars and their average mass but the 

majority of the mass in the Universe is dark matter.

The value of ρ
c
 can be estimated using Newtonian gravitation. 

We consider a galaxy at a distance r away from an observer with 

a recessional velocity of v with respect to the observer. 

recessional velocity =ν

average density of universe

inside sphere = ρ

observer

radius r

The net effect of all the masses in the Universe outside the 

sphere on the galaxy is zero (see page 208 for an analogous 

situation). The galaxy is thus gravitationally attracted in by a 

total mass M which acts as though it was located at the observer 

as shown (above).

recessional

velocity =ν

radius r

total mass in

sphere, M

The total energy E
T
 of the galaxy is the addition of its kinetic 

energy E
K
 and gravitational potential energy, E

P
 given by:

E
T 
= E

K
+ E

P

E
K

=
1
2

mv
2 but Hubble’s law gives v = H

0
r

∴ E
K

=
1
2

m(H
0
r)2

E
P
= -

GMm_
r

  but M = volume × density =
4
3
πr

3
ρ

E
P
= -

G4πr
3
ρm_

3r
= -

4Gπr
2
ρm_

3

If E
T
 is positive, the galaxy will escape the inward attraction – 

the universe is open. 

If E
T
 is negative, the galaxy will eventually fall back in – the 

universe is closed. 

If E
T
 is exactly zero, the galaxy will take an innite time to be 

brought to rest – the universe is at. This will occur when the 

density of the universe ρ is equal to the critical density ρ
c

∴
1
2

m(H
0
r)2 =

4Gπr
2
ρ m_

3

∴ mH
0

2
r

2 =
8Gπr

2
ρ m_

3

∴ ρ
c
= 

3H
0
2

_
8πG
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coSmic DenSity parameter
The cosmic density parameter, Ω

0
 is the ratio of the average 

density of matter and energy in the Universe, ρ, to the critical 

density, ρ
c

Ω
0
=

ρ___
ρ

C

If Ω
0
> 1, the universe is closed.

If Ω
0
< 1, the universe is open.

If Ω
0
= 1, the universe is at.

Dark energy
Gravitational attraction between masses means that the rate 

of expansion of the Universe would be expected to decrease 

with time. Measurements using type Ia supernovae as standard 

candles have provided strong evidence that the expansion 

has not, in fact, been slowing down over time (see page 204). 

Observations currently indicate that the Universe’s rate of 

expansion has been increasing.

Currently there is no single accepted explanation for this 

observation and, of course, it is possible that our theories of 

gravity and general relativity need to be modied. Perhaps we 

are on the brink of discovery of new physics. Whatever the 

cause, the reason for the Universe’s accelerating expansion has 

been given the general name ‘dark energy’.

Dark energy and dark matter are two different concepts. In 

both cases experimental evidence implies their existence but 

physicists have yet to agree a theoretical basis that explains the 

existence of either concept.

• Dark matter is hypothesized to explain the ‘missing matter’ 

that must exist within galaxies for the known laws of 

gravitational attraction to be able to explain a galaxy’s rate 

of rotation. Dark matter adds to the attractive force of 

gravity acting within galaxies implying more unseen 

mass than had been previously expected, hence the name 

dark mass

• The observation that expansion of the Universe is 

accelerating means that then there must be a force that is 

counteracting the attractive force of gravity. Dark energy 

opposes the attractive force of gravity between 

galaxies. The resulting increase in energy implies an unseen 

source of energy, hence the name dark energy

effect of Dark energy on the coSmic Scale factor
The existence of dark energy counteracts the attractive force of gravity. This will cause the cosmic scale factor to increase over time. 

The graph below compares how a at Universe is predicted to develop with and without dark energy.

cosmic scale
factor, R

now time

at Universe with dark energy
(accelerating expansion)

at Universe without dark energy
(approaches maximum size)
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aStrophySicS reSearch
Much of the current fundamental research that is being 

undertaken in astrophysics involves close international 

collaboration and the sharing of resources. Scientists can be 

proud of their record of international collaboration. For example, 

at the time that the previous edition of this book was being 

published, the Cassini spacecraft had been in orbit around Saturn 

for several years sending information about the planet back to 

Earth and is currently (2014) continuing to produce data. 

The Cassini–Huygens spacecraft was funded jointly by ESA (the 

European Space Agency), NASA (the National Aeronautics and 

Space Administration of the United States of America) and ASI 

(Agenzia Spaziale Italiana – the Italian Space Agency). As well 

as general information about Saturn, an important focus of the 

mission was a moon of Saturn called Titan. The Huygens probe 

was released and sent back information as it descended towards 

the surface. The information discovered is shared among the 

entire scientic community. Many current projects, for example 

the Dark Energy Survey (involving more than 120 scientists for 

23 institutions worldwide), continue this process.

All countries have a limited budget available for the scientic 

research that they can undertake. There are arguments both for, 

and against, investing signicant resources into researching the 

nature of the Universe.

Future research, such as the Euclid mission to map the 

geometry of the dark Universe continues to be planned.

Arguments for:

• Understanding the nature of the Universe sheds light on 

fundamental philosophical questions like:

• Why are we here?

• Is there (intelligent) life elsewhere in the Universe?

• It is one of the most fundamental, interesting and important 

areas for humankind as a whole and it therefore deserves to 

be properly researched.

• All fundamental research will give rise to technology that 

may eventually improve the quality of life for many people.

• Life on Earth will, at some time in the distant future, become 

an impossibility. If humankind’s descendents are to exist in 

this future, we must be able to travel to distant stars and 

colonize new planets.

Arguments against:

• The money could be more usefully spent providing food, 

shelter and medical care to the many millions of people who 

are suffering from hunger, homelessness and disease around 

the world.

• If money is to be allocated on research, it is much more 

worthwhile to invest limited resources into medical research. 

This offers the immediate possibility of saving lives and 

improving the quality of life for some sufferers.

• It is better to fund a great deal of small diverse research 

rather than concentrating all funding into one expensive 

area. Sending a rocket into space is expensive, thus funding 

space research should not be a priority.

• Is the information gained really worth the cost?

current obSerVationS
Three recent scientic experiments that have studied the CMB 

in detail have together added a great deal to our understanding 

of the Universe. Particular experiments of note include:

• NASA’s Cosmic Background Explorer (COBE)

• NASA’s Wilkinson Microwave Anisotropy Probe (WMAP)

• ESA’s Planck space observatory.

Together these experiments have:

• mapped the anisotropies of the CMB in great detail and with 

precision

• discovered that the rst generation of stars to shine did so 

200 million years after the Big Bang, much earlier than 

many scientists had previously expected

• calculated the age of the Universe as 13.75 ± 0.14 billion 

years old

• calculated the Hubble constant to be 67.15 km s 1 Mpc 1

• showed that their results were consistent with the Big Bang 

and specic ination theories

• showed the Universe to be at, Ω
0
= 1

• calculated the Universe to be composed of 4.6% atoms,  

23% dark matter and 71.4% dark energy.

In summary, current scientic evidence suggests that, when dark 

matter and dark energy are taken into consideration, the Universe:

• is at

• has a density that is, within experimental error, very close to 

the critical density 

• has an accelerating expansion

• is composed mainly of dark matter and dark energy. 

asss sHL
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ib qss – sss
1. This question is about determining some properties of the star 

Wolf 359.

a) The star Wolf 359 has a parallax angle of 0.419 seconds.

(i) Describe how this parallax angle is measured. [4]

 (ii) Calculate the distance in light-years from Earth 

toWolf 359. [2]

(iii) State why the method of parallax can only be  

used for stars at a distance of less than a few  

hundred parsecs from Earth. [1]

b) The ratio [4]

apparent brightness of Wolf 359_____________________________
apparent brightness of the Sun

 is 3.7 × 10 15

Show that the ratio

luminosity of Wolf 359_____________________
luminosity of the Sun

 is 8.9 × 10 4. (1ly = 6.3 × 104 AU)

c) The surface temperature of Wolf 359 is 2800 K and 

itsluminosity is 3.5 × 1023 W. Calculate the radius of 

Wolf359. [2]

d) By reference to the data in (c), suggest why Wolf 359 is 

neither a white dwarf nor a red giant. [2]

2. The diagram below shows the grid of an HR diagram, 

onwhich the positions of selected stars are shown.  

(LS = luminosity of the Sun.)

3.0 × 104

1.0 × 105 A

1.2 × 104

surface temperature T/K

luminosity L/Ls

3.0 × 103

1.0 × 103

1.0 × 101

1.0 × 10 1

1.0 × 10 3

B

a) (i) Draw a circle around the stars that are red giants. 

Label this circle R. [1]

(ii) Draw a circle around the stars that are white 

dwarfs.Label this circle W. [1]

(iii) Draw a line through the stars that are main 

sequencestars. [1]

b) Explain, without doing any calculation, how 

astronomerscan deduce that star B has a larger 

diameterthan star A. [3]

c) Using the following data and information from the 

HRdiagram, show that star A is at a distance of about 

800pc from Earth.

Apparent brightness of the Sun = 1.4 × 103 W m 2

Apparent brightness of star A = 4.9 × 10 9 W m 2

Mean distance of Sun from Earth = 1.0 AU 

1 pc = 2.1 × 105 AU [4]

d) Explain why the distance of star A from Earth cannot be 

determined by the method of stellar parallax. [1]

3. a) The spectrum of light from the Sun is shown below.
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Use this spectrum to estimate the surface temperature  

of the Sun. [2]

b) Outline how the following quantities can, in principle,  

be determined from the spectrum of a star.

(i) The elements present in its outer layers. [2]

(ii) Its speed relative to the Earth. [2]

4. a) Explain how Hubble’s law supports the Big Bang  

model of the Universe. [2]

b) Outline one other piece of evidence for the model,  

saying how it supports the Big Bang. [3]

c) The Andromeda galaxy is a relatively close galaxy,  

about 700 kpc from the Milky Way, whereas the  

Virgo nebula is 2.3 Mpc away. If Virgo is moving  

away at 1200 km s 1, show that Hubble’s law  

predicts that Andromeda should be moving away  

at roughly 400 km s 1. [1]

d) Andromeda is in fact moving towards the Milky Way,  

with a speed of about 100 km s 1. How can this 

discrepancy from the prediction, in both magnitude  

and direction, be explained? [3]

e) If light of wavelength 500 nm is emitted from  

Andromeda, what would be the wavelength observed 

from Earth? [3]

5. A quasar has a redshift of 6.4. Calculate the ratio of the 

current size of the universe to its size when the quasar 

emitted the light that is being detected. [3]

HL

6. Explain the following:

a) Why more massive stars have shorter lifetimes [2]

b) The jeans criterion [2]

c) How elements heavier than iron are produced by stars [2]

d) How type 1a supernovae can be used as standard candles [2]

e) The signicance of observed anisotropies in the  

Cosmic Microwave background [2]

f) The signicance of the critical density of universe [2]

g) The evidence for dark matter [2]

h) What is meant by dark energy [2]

7. Calculate the critical density for of the universe using the 

Hubble constant of 71 km s 1 Mpc 1 [3]
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Plotting graPhs – axes and best fit
The reasn fr ltting a grah in the rst lace is that it allws 

us t identify trends. T be recise, it allws us a visual way 

f reresenting the variatin f ne quantity with resect t 

anther. When ltting grahs, yu need t make sure that all 

f the fllwing ints have been remembered:

• The grah shuld have a title. Smetimes they als need a key.

• The scales f the axes shuld be suitable – there shuld nt, 

f curse, be any sudden r uneven ‘jums’ in the numbers.

• The inclusin f the rigin has been thught abut. Mst 

grahs shuld have the rigin included – it is rare fr a grah 

t be imrved by this being missed ut. If in dubt include it. 

Yu can always draw a secnd grah withut it if necessary.

• The nal grah shuld, if ssible, cver mre than half the 

aer in either directin.

• The axes are labelled with bth the quantity (e.g. current) 

AND the units (e.g. ams).

• The ints are clear. Vertical and hrizntal lines t make 

crsses are better than 45 degree crsses r dts.

• All the ints have been ltted crrectly.

• Errr bars are included if arriate.

• A best-t trend line is added. This line NEVER just ‘jins the 

dts’ – it is there t shw the verall trend.

• If the best-t line is a curve, this has been drawn as a single 

smth line.

• If the best-t line is a straight line, this has been added WITH 

A RULER.

• As a general rule, there shuld be rughly the same number 

f ints abve the line as belw the line. 

• Check that the ints are randmly abve and belw the 

line. Smetimes ele try t t a best-t straight line 

t ints that shuld be reresented by a gentle curve. If 

this was dne then ints belw the line wuld be at the 

beginning f the curve and all the ints abve the line 

wuld be at the end, r vice versa. 

• Any ints that d nt agree with the best-t line have been 

identied.

Measuring intercePt, gradient and area 

under the graPh
Grahs can be used t analyse the data. This is articularly easy 

fr straight-line grahs, thugh many f the same rinciles can 

be used fr curves as well. Three things are articularly useful: 

the intercept, the gradient and the area under the graph. 

1. Intercept

In general, a grah can intercet (cut) either axis any number f 

times. A straight-line grah can nly cut each axis nce and ften 

it is the y-intercept that has articular imrtance. (Smetimes 

the y-intercet is referred t as simly ‘the intercet’.) If a 

grah has an intercet f zer it ges thrugh the rigin. 

Proportional – nte that tw quantities are rrtinal if the 

grah is a straight line THAT pASSES THRoUGH THE oRIGIN. 

Smetimes a grah has t be ‘cntinued n’ (utside the range f 

the readings) in rder fr the intercet t be fund. This rcess is 

knwn as extrapolation. The rcess f assuming that the trend 

line alies between tw ints is knwn as interpolation. 

The line is interpolated

between the points.

extrapolation

The extrapolation of the

graph continues the

trend line.

y-intercept

2. Gradient

The gradient f a straight-line grah is the increase in the y-axis 

value divided by the increase in the x-axis value. 

The fllwing ints shuld be remembered:

• A straight-line grah has a cnstant gradient.

• The triangle used t calculate the gradient shuld be as large 

as ssible.

• The gradient has units. They are the units n the y-axis 

divided by the units n the x-axis.

• only if the x-axis is a measurement f time des the gradient 

reresent the RATE at which the quantity n the y-axis 

increases.

The gradient f a curve at any articular int is the gradient f 

the tangent t the curve at that int.

xx

∆x

∆y
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∆yP

gradient of straight

line =

at point P on the curve,

gradient=
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∆x
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∆x

3. Area under a graph

The area under a straight-line grah is the rduct f 

multilying the average quantity n the y-axis by the quantity 

n the x-axis. This des nt always reresent a useful hysical 

quantity. When wrking ut the area under the grah:

• If the grah cnsists f straight-line sectins, the area can be 

wrked ut by dividing the shae u int simle shaes.

• If the grah is a curve, the area can be calculated by ‘cunting 

the squares’ and wrking ut what ne square reresents.

• The units fr the area under the grah are the units n the 

y-axis multilied by the units n the x-axis.

• If the mathematical equatin f the line is knwn, the area f 

the grah can be calculated using a rcess called integration

area under graph area under graph

y

x

y

x

gp

a P P e n d i x17
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gp y  m  p

equation of a straight-line graPh
All straight-line grahs can be described using ne general 

equatin

y = mx + c

y and x are the tw variables (t match with the y-axis and  

the x-axis).

m and c are bth cnstants – they have ne xed value.

• c reresents the intercet n the y-axis (the value y takes 

when x = 0)

• m is the gradient f the grah.

In sme situatins, a direct lt f the measured variable will 

give a straight line. In sme ther situatins we have t chse 

carefully what t lt in rder t get a straight line. In either 

case, nce we have a straight line, we then use the gradient and 

the intercet t calculate ther values. 

Fr examle, a simle exeriment might measure the velcity f 

a trlley as it rlls dwn a sle. The equatin that describes the 

mtin is v = u + at where u is the initial velcity f the bject. In 

this situatin v and t are ur variables, a and u are the cnstants. 

Yu shuld be able t see that the hysics equatin has exactly 

the same frm as the mathematical equatin. The rder has 

been changed belw s as t emhasize the link.

v = u + at

y = c + mx

By cmaring these tw equatins, yu shuld be able t see 

that if we lt the velcity n the y-axis and the time n the 

x-axis we are ging t get a straight-line grah. 

20

15

10

5

1 2 3 4 5
time t / s

ve
lo

ci
ty

v
 /

 m
s

1

= 0

gradient =
20

= 4 m s 2

5

The cmarisn als wrks fr the cnstants. 

• c (the y-intercet) must be equal t the initial velcity u

• m (the gradient) must be equal t the acceleratin a

In this examle the grah tells us that the trlley must 

have started frm rest (intercet zer) and it had a cnstant 

acceleratin f 4.0 m s 2

choosing what to Plot to get a  

straight line
With a little rearrangement we can ften end u with the 

hysics equatin in the same frm as the mathematical 

equatin f a straight line. Imrtant ints include 

• Identify which symbls reresent variables and which 

symbls reresent cnstants.

• The symbls that crresnd t x and y must be variables and 

the symbls that crresnd t m and c must be cnstants.

• If yu take a variable reading and square it (r cube, square 

rt, recircal etc.) – the result is still a variable and yu 

culd chse t lt this n ne f the axes. 

• Yu can lt any mathematical cmbinatin f yur riginal 

readings n ne axis – this is still a variable.

• Smetimes the hysical quantities invlved use the symbls m

(e.g. mass) r c (e.g. seed f light). Be careful nt t cnfuse 

these with the symbls fr gradient r intercet.

Example 1

The gravitatinal frce F that acts n an bject at a distance r 

away frm the centre f a lanet is given by the equatin 

F =
GMm_

r2
where M is the mass f the lanet and the  

m is mass f the bject.

If we lt frce against distance we get a curve (grah 1).

We can restate the equatin as F =
GMm____

r2 + 0 and if we lt F

n the y-axis and 1

r2 n the x-axis we will get a straight-line 

(grah2).
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Example 2

If an bject is laced in frnt f a lens we get an image. The 

image distance v is related t the bject distance u and the fcal 

length f the lens fby the fllwing equatin.

1
u +

1
v =

1

f

There are many ssible ways t rearrange this in rder t get 

it int straight–line frm. Yu shuld check that all these are 

algebraically the same.

v + u =
uv_
f

r
v
u =

v

f
1 r

1
u =

1

f
-

1
v

(v
+

u
) v u

1 u

= 0

intercept = –1

uv v

gradient =
1

f gradient =
1

f

intercept = 
1

f

1
v

gradient = –1



217A P P E N D I X 

logs – base ten and base 
Mathematically,

If a = 10b

Then lg (a) = b

[t be abslutely recise lg
10

 (a) = b]

Mst calculatrs have a ‘lg’ buttn 

n them. But we dn’t have t use 10 

as the base. We can use any number 

that we like. Fr examle we culd 

use 2.0, 563.2, 17.5, 42 r even 

2.7182818284590452353602874714. 

Fr cmlex reasns this last number 

IS the mst useful number t use! It 

is given the symbl e and lgarithms 

t this base are called natural 

logarithms. The symbl fr natural 

lgarithms is ln (x). This is als n mst 

calculatrs.

If p = eq

Then ln (p) = q

The werful nature f lgarithms 

means that we have the fllwing rules

ln (c × d) = ln (c) + ln (d) 

ln (c ÷ d) = ln (c)  ln (d)

ln (cn) = n ln (c) 

ln (1
c ) = -ln (c)

These rules have been exressed fr 

natural lgarithms, but they wrk fr 

all lgarithms whatever the base. 

The int f lgarithms is that they can 

be used t exress sme relatinshis 

(articularly wer laws and 

exnentials) in straight-line frm. This 

means that we will be ltting grahs 

with lgarithmic scales. 

A nrmal scale increases by the same 

amunt each time. 

1 2 3 4 5 6 7 8 9 10 11

A lgarithmic scale increases by the 

same rati all the time. 

100 101 102 103

1 10 100 1000

Power laws and logs  
(log – log) 
When an exerimental situatin invlves 

a wer law it is ften nly ssible t 

transfrm it int straight-line frm by 

taking lgs. Fr examle, the time erid 

f a simle endulum, T, is related t its 

length, l, by the fllwing equatin.

T = k l p

k and p are cnstants.

A lt f the variables will give a curve, 

but it is nt clear frm this curve what 

the values f k and p wrk ut t be. on 

t f this, if we d nt knw what the 

value f p is, we can nt calculate the 

values t lt a straight-line grah. 
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Time erid versus length fr a simle 

endulum

The ‘trick’ is t take lgs f bth sides f 

the equatin. The equatins belw have 

used natural lgarithms, but wuld wrk 

fr all lgarithms whatever the base.

ln (T) = ln (k l p)

ln (T) = ln (k) + ln (l p)

ln (T) = ln (k) + p ln (l)

This is nw in the same frm as the 

equatin fr a straight line

y = c + mx

Thus if we lt ln (T) n the y-axis and 

ln (l) n the x-axis we will get a straight-

line grah. 

The gradient will be equal t p 

The intercet will be equal t  

ln (k) [s k = e(intercet)]

In
 T

 In l

gradient = p

intercept = ln (k)

plt f ln (time erid) versus  

ln (length) gives a straight-line grah

Bth the gravity frce and the electrstatic 

frce are inverse-square relatinshis. This 

means that the frce ∝ (distance aart) 2. 

The same technique can be used t 

generate a straight-line grah. 

fo
rc

e
lo

g 
(f

or
ce

)
distance apart

log (distance apart)

gradient=-2

intercept = log (k)

force =
(distance apart)2

k

Inverse square relatinshi – direct lt 

and lg-lg lt

exPonentials and logs  
(log – linear)
Natural lgarithms are very imrtant 

because many natural rcesses are 

exnential. Radiactive decay is an 

imrtant examle. In this case, nce 

again the taking f lgarithms allws 

the equatin t be cmared with the 

equatin fr a straight line.

Fr examle, the cunt rate R at any 

given time t is given by the equatin

R = R
0
 e λt

R
0
 and λ are cnstants.

If we take lgs, we get

ln (R) = ln (R
0

e λt)

ln (R) = ln (R
0
) + ln (e λt)

ln (R) = ln (R
0
) λt ln (e)

ln (R) = ln (R
0
) λt [ln (e) = 1]

This can be cmared with the equatin 

fr a straight-line grah

y = c + mx

Thus if we lt ln (R) n the y-axis and t

n the x-axis, we will get a straight line.

Gradient = -λ

Intercet = ln (R
0
)

R

R0

ln
 (
R

)

R= R0e λt

gradient= λ

intercept = ln (R0)

t

t

gp y – m hl
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Answers 
Topic 1 (Page 8): Measurements and uncertainties

1. (a)(i) 0.5 × acceleration down the slope (a)(iv) 0.36 ms 2  

2. C 3. D 4. D 5. (b) 2.4 ± 0.1 s (c) 2.6 ± 0.2 ms 2  

6. (b)(i) 3; (b)(ii) 2.6 10 4 Nm 3

Topic 2 (Page 24): Mechanics

1. C 2. D 3. B 4. B 5. (a) 520 N; (b)(i) 1.2 MJ; (b)(ii) 270 W

6. (a) equal; (b) left; (c) 20 km hr 1; (e) car driver; (f) No  

7. (c) 3.50 N

Topic 3 (Page 32): Thermal Physics

1. B 2. D 3. D 4. D 5. (a) (i) length = 20 m, depth = 2 m, 

width = 5m, temp = 25 °C; (a)(ii) $464; (b)(i) 84 days  

6. (a)(i) 7.8 J K mol 1

Topic 4 (Page 50): Waves

1. C 2. C 3. (a) longitudinal (b) (i) 0.5 m; (ii) 0.5 mm; 

(iii) 330 m s 1 4. (c) (i) 2.0 Hz; (ii) 1.25 (1.3) cm; (f) (i) 4.73 ×10 7 m; 

(ii) 0.510 mm 5. 45°

Topic 5  (Page 64): Electricity and magnetism

1. C 2. A 3. (c) (ii) 7.2 × 1015 m s 2 (c) (iv) 100 v 4. (d) B;  

(e) (i) Equal; (ii) approx. 0.4A; (iii) lamp A will have greater 

power dissipation;

Topic 6 (Page 68): Circular motion and gravitation

1. A 2. A 3. C 4. (a)(ii) No; (b) 1.4 m s 1 5. (b) (i) g = G
M_
R2

  ; 

(b)(ii) 1.9 × 1027 kg 6. (a) g = G
M_
R2

  ; (b) 6.0 × 1024 kg;

Topic 7 (Page 81): Atomic nuclear and particle physics

1. B 2. D 3. A 4. D 5. B 6. (a)(i) uud; (ii) electron is 

fundamental; (iii) 3 quarks or 3 antiquarks; (iv) a quark and an 

antiquark; 7. u u [π0] 8. (b)(i)    1
2H + 12

26Mg →  11

24Na + 2

4He

9. (a)     6

12C →  7

12N + 1

 0 β +ν; (b)(ii) 11600 years; 10. (a)(i) 3;  

(b)(i) 1.72 × 1019 11. A

Topic 8 (Page 94): Energy production

1. (c) 15 MW (d)(i) 20% 4. (a) 1000 MW;  

(b) 1200 MW; (c) 17%; (d) 43 kg s 1 5. (c) 1.8 MW

Topic 9 (Page 104): Wave phenomena

1. B 2. (b) 27.5 m s 1 3. (a) 0.2°; 4. (a) (i) zero; (ii) π or
λ
2
  ; 

(iii) zero; (b) 110 nm;  5. (b) (i) 1.5 × 10 10 m;  

(d) (ii) 5.0 × 1019 m s 2

Topic 10 (Page 111): Fields

1. A 2. C 3. C 4. (a)(i) 1.9 × 1011 J; (a)(ii) 7.7 km hr-1 (a)(iii) 

2.2 × 1012 J; (c) 2.6 hr 5. (b)(i) 2.5 m s 2

Topic 11 (Page 120): Electromagnetic induction

1. D 3. B 4. B 5. D 6. (b) 0.7 v 7. (a) 7.2 × 10 4 C; (b) 2.9 

× 10 3 s; (c)(ii) 5CR = 3.5 s; (c)(iii) No

Topic 12 (Page 130): Quantum and nuclear

1. C 2. B 3. (b) ln R & t; (c) Yes; (e) 0.375 hr 1; (h) 1.85 hr 

5. (b)(i) 6.9 ×10 34 Js; (b)(ii) 3.3 ×10 19 J 6. 4.5 ×104 Bq

Option A (Page 151): relativity

2. (a)(i) 1.40c; (a)(ii) 0.95c; (c) 6.0 × 1019 J 3. a) 2 yrs;  

b) 4 yrs ; c) x = 5 ly; d) 0.5 c 4. (c) front; (d) T:100 m, S:87 m; 

(e) T:75m, S:87 m; 5. (a)(i) zero; (a)(ii) 2.7 m
0
c2; (b)(i) 0.923 c; 

(b)(ii) 2.4 m
0
c2; (b)(iii) 3.6 m

0
c2; (c) agree.

Option B (Page 170): Engineering physics

2. a) 0.95 N m; b) 25.2 J; c) 13.4 N 3. (a) No; (b) Equal; (c)  

300 J; (d) 500 J; (e) 500 J; (f) 150 J; (g) 16% 4. (b) 990K; (c) 

(i) 1; (c) (ii) 2 & 3; (c) (iii) 3; 6. Laminar (R=1200) 7. (a) 2Hz;  

(b) 21 mW

Option C (Page 189): Imaging

1. (a) 14 cm behind mirror, virtual, upright, magnied (×2);  

(b) 24 cm behind diverging lens, real, inverted, magnied (×3); 

(c) 4.5 cm behind second lens, real, upright & diminished (0.25)

2. (d) upside down; (e) 60 cm; 4. (a) – 10 dB; (b) 0.5 mW

5. (a) 1 →20 MHz; (b)(iii) d = 38mm, l = 130mm  

6. (b)(ii) 4 mm;  

(b)(iii) 9.3 mm; (b)(iv) 18.6 mm

Option D (Page 214): Astrophysics

1. (ii) d = 7.78 ly, (c) r = 8.9 × 107 m; 3. (a) 5800 K  

4. (e) 499.83 nm 5. 14% of current size 7. 9.5 × 10 27 kg m 3

Origin of individual questions
The questions detailed below are all taken from past IB examination papers and are all © IB.

Topic 1: Measurement and uncertainties

1 N99S2(S2) 2 M98H1(5) 3 N98H1(5) 4 M99H1(3)  

5 M98SpH2(A2) 6 N98H2(A1)

Topic 2: Mechanics

1 M98S1(2) 2 M98S1(4) 3 M98S1(8) 5 M101S2(A2)  

6 N00H2(B2) 7 M091S2(A2)

Topic 3: Thermal Physics

1 N99H1(15) 2 N99H1 (16) 3 N99H1(17) 5 M98 Sp2(B2)  

6 M112H2(A5) 7 M091S2(A2)

Topic 4: Waves

1 M01H1(14) 2 N10H1(15) 3 N03S2(A3) 4 5 N04H2(B4.1)

Topic 5: Electricity and magnetism

4 N03 HL2 Q2.2

Topic 6: Circular motion and gravitation

1 N10S1(7) 2 M111H1(4) 3 M101S1(8) 4 M1112(A5)  

5 M08 SpS3(A3) 6 N05H2(B2.1) – part question – sections (d) 

to (g)

Topic 7: Atomic, nuclear and particle physics

1 N98S1(29) 2 M99S1(29) 3 M99S1(30 4 M98SpS1(29)  

5 M98SpS1(30) 8 M98S2(A3) 9 M99S2(A3) 10 M99H2(B4) 

11 M122H1(32)

Topic 8: Energy production

1 NO1S3(C1) 2 M99S3(C1) 3 M98SpS3(C3) 4 M98SpS3(C2) 

5 M98S3(C2) 6 M122H2(B2.1)

Topic 9: Wave phenomena

1 N01H1(24) 2 N98H2(A5) 3 M111H3(G3) 5 N09 HL3 G4

Topic 10: Fields 

3 N10H1(24) 4 N98H2(B4) 5 N01H2(A3)

Topic 11: Electromagnetic induction

1 N00H1(31) 3 M98H1(33) 4 M112H1(24)  5 N99H1(34)  

6 N98H2(A4)

Topic 12: Quantum and nuclear physics

1 N10H1(34) 2 M01H1(35) 3 N00H2(A1)

Option A relativity

2  M111H3(2) 4 M00H3(G1) 5 N01H3(G2) 6 M092H3(3)

Option B Engineering physics

3 N01H2(B2) 4 N98H2(A2)

Option C imaging

2 N00H3(H1) 5 M03H3(D2)

Option D Astrophysics

1 M101H3(E1) 2 M111H3(E2) 3 N01H3(F2) 4 N98H3(F2)
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Index 

Page numbers in italics refer to question sections.

A

absolute magnitude  194

absolute uncertainties  5

absolute zero  29

absorption spectra  69

greenhouse gases  92

acceleration  9, 14, 108

acceleration-time graphs  10

acceleration, velocity and displacement 

during simple harmonic motion 

[SHM]  34, 95

equations of uniform angular 

acceleration  152

experiment to determine free-fall 

acceleration  13

uniformly accelerated motion  11

achromatic doublets  178

acoustic impedance  187

addition  5

air resistance  16

albedo  90

alpha radiation  72

alpha decay  72, 127

alternating current  54

coil rotating in a magnetic eld –  

ac generator  114

diode bridges  115

losses in the transmission of power  

115

RMS values  114

transformer operation  114

transmission of electrical power  115

ammeters  56

amperes  63

ampliers  183

amplitude  39, 48

angular impulse  157

angular magnication  177

angular momentum  157, 165

conservation of angular momentum  

157

angular motion  124

angular size  177

anisotropies  210

antimatter  73

antineutrinos  129

antinodes  48

antiparticles  78

apparent magnitude  194

Archimedes’ principle  164

assumptions  3

asteroids  190

astronomical units (AUs)  191, 193, 194

astrophysics  190, 214

accelerating Universe  204

astrophysics research   213

Big Bang model  201

Cepheid variables  198

cosmological principle and 

mathematical models  208

current observations  213

dark energy  212

future of the Universe   211

galactic motion  202

Hertzsprung–Russell diagram  197

history of the Universe   210

Hubble’s law and cosmic scale factor  

203

luminosity  194

nature of stars  192

nuclear fusion – the Jeans criterion  

205

nucleosynthesis  196

nucleosynthesis off the main sequence  

206

objects in the Universe  190–1

red giant stars  199

rotation curves and dark matter  209

stellar evolution  200

stellar parallax  193

stellar spectra  195

types of supernovae  207

atomic clock frequency shifts  148

atomic energy levels  129

atomic physics  69, 77, 81

atomic model  77

evidence for  atomic model  77

explanation of atomic spectra  69

structure of matter  77

atomic spectra  69, 123

atoms  26

attenuation  183

attenuation coefcient  185

mass attenuation coefcient  185

Avogadro constant  30

B

background radiation  73

background count  73

Balmer series  123

barium meals  186

barrel distortion  178

baryonic matter  209

baryons  78, 79

base units  2

batteries  60

becquerels  73

Bernoulli effect  165

applications of the Bernoulli equation  

166

Bernoulli equation  165

beta radiation  72

beta decay  72, 129

Big Bang model  201

binding energy  75

binding energy per nucleon  76

binoculars  45

birefringence  41

black-body radiation  90, 194

black holes  150, 196, 200

Schwarzchild radius  150

blue shift  195

Bohr model of the atom  124

boundary conditions  49

Boyle’s law  31

Brackett series  123

Brewster’s law  41

buoyancy  164

C

cancer  72

capacitance  117

capacitors  116

capacitor [RC] discharge circuits  118

capacitor charging circuits  119

capacitors in series and parallel  117

energy stored in charged capacitor  

119

carbon dioxide  92

carbon xation  92

Carnot cycles  163

Carnot engine  163

Carnot theorem  163

cells  60

Celsius scale  25

Cepheid variables  196

mathematics  198

principles  198

chain reaction  76

Chandrasekhar limit  200

charge  51

charge capacity  60

Coulomb’s law  51

 current  54

particle acceleration and electric 

charge  145

Charles’s law  31

chemical energy  22

chlorouorocarbons (CFCs)  92

circuits  55

capacitor [RC] discharge circuits  118

capacitor charging circuits  119

investigating diode-bridge rectication 

circuit experimentally  116

parallel circuits  56

potential divider circuits  57

rectication and smoothing circuits  

116

sensor circuits  57

series circuits  56

circular motion  65–7, 68

angular velocity and time period  66

circular motion in a vertical plane  66

examples  65

mathematics of circular motion  65

mechanics of circular motion  65

Newton’s law of universal gravitation  

67, 68

radians  66

collisions  23

colour  79

comets  190

communications  184

coaxial cables  184

optical bres  184

wire pairs  184

complex numbers  125

composite particles  78

compression  14, 16
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compression waves  35

concentration of solutions  42

conduction  89

conduction electrons  54

conductors  51

conjugate quantities  126

conservation of energy  22

constant pressure  29, 160

constant temperature  29

constant volume  29

constellations  190–1

constructive interference  40, 47

continuity equation  165

continuous spectrum  69

continuous waves  35

convection  89

conventional current  54

converging lenses  172, 173

convex lenses  173

Copenhagen interpretation  125

cosmic density parameter  212

cosmic microwave background (CMB) 

radiation  73

uctuations in CMB  210

cosmic scale factor  203

cosmic scale factor and temperature  

210

effect of dark energy on the cosmic 

scale factor  212

cosmological principle  208

Coulomb’s law  51

coulombs  53

couples 154

critical angle  45

critical density  211

CT (computed tomography) scans  186

current  54

D

damping  168

dark energy  204, 212

effect of dark energy on the cosmic 

scale factor  212

dark matter  209

gravity  212

MACHOs, WIMPs and other theories 

209

Davisson and Germer experiment  122

De Broglie hypothesis  122

deformation  14

derived units  2

destructive interference  40, 47

dielectric material  117

diffraction  46

basic observations  46, 97

Davisson and Germer experiment  122

diffraction and resolution  101

diffraction grating  99

electron diffraction experiment  122

examples of diffraction  46

explanation  97

multiple-slit diffraction 99

practical signicance of diffraction  46

resolvance of diffraction gratings  101

single-slit diffraction with white light  

97

uses of diffraction gratings  99

diode bridges  115

investigating diode-bridge rectication 

circuit experimentally  116

direct current  54

discharge characteristics  60

dispersion  183

acceleration, velocity and displacement 

during simple harmonic motion 

[SHM]  34, 

95

diverging lenses  175

denitions and important rays  175

images created by diverging lens  175

division  5

Doppler effect  102

Doppler broadening  103

examples and applications  103

mathematics of the Doppler effect  102

moving observer  102

moving source  102

drag  16

drift speed equation  54

drift velocity  54

dwarf planets  190

dynamic friction  20

E

Earth  190

day  191

year  191

earthquake waves  35

eddy currents  115

efciency  22

Einstein model of light  121

elastic collisions  23

elastic potential energy  22

electric elds  52, 61

comparison between electric and 

gravitational elds  110

comparison between electric and 

magnetic elds  132

energy difference in an electric eld  

53

representation of electric elds  52

electric potential difference  53, 109

electric potential energy  53, 109

electrical conduction in a metal  54

electrical energy  22

electrical meters  56

electricity  51–60, 64

electric charge and Coulomb’s law  51

electric circuits  55

electric current  54

electric elds  52

electric potential energy and electric 

potential difference  53, 109

example of use of Kirchoff’s laws  59

internal resistance and cells  60

potential divider circuits and sensors  

57

resistivity  58

resistors in series and parallels  56

electromagnetic force  71

electromagnetic induction  112–19, 120

alternating current  114–15

capacitance  117

capacitor charge  119

capacitor discharge  118

induced electromotive force (emf)  112

Lenz’s law and Faraday’s law  113

rectication and smoothing circuits  

116

electromagnetic waves  37, 89

electromotive force (emf)  60

induced emf  112

production of  induced emf by relative 

motion  112

transformer-induced emf  113

electron degeneracy pressure  200

electrons  77

nuclear scattering experiment 

involving electrons  128

orbital  125

electronvolts  53

electrostatic force  14, 16, 51

electrostatic potential energy  22

elementary particles  78

emission spectra  69

emissivity  90

energies, range of  1

energy  22

concepts of energy and work  22

conservation of energy  22

energy ow for stars  192

energy types  22

mass and energy  143

relativistic momentum and energy  

144

wave energy  48

energy degradation  162

energy production  82–93, 94

electrical power production  82

energy conversions  82

fossil fuel power production  84

global warming  93

greenhouse effect  92

hydroelectric power  87

new and developing technologies  88

nuclear power  85–6

primary energy sources  83

radiation  90

secondary energy sources  88

solar power  87, 91

thermal energy transfer  89

wind power and other technologies  

88

energy sources  83

comparison of energy sources  83

non-renewable energy sources  83

renewable energy sources  83

specic energy and energy density  83

energy transfer  35, 89

energy transformations  22

wind power  88

engineering physics  152, 170

Bernoulli – examples  166

equilibrium examples  155

rst law of thermodynamics  161

uids at rest  164

uids in motion – Bernoulli effect  165

forced oscillations and resonance  

168–9

heat engines and heat pumps  163

Newton’s second law – moment of 

inertia  156

rotational dynamics  157

second law of thermodynamics and 
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entropy  162

solving rotational problems  158

thermodynamic systems and concepts  

159

translational and rotational 

equilibrium  154

translational and rotational motion  

152–3

viscosity  167

work done by an ideal gas  160

entropy  162

equilibrium  16

equilibrium examples  155

hydrostatic equilibrium  164

translational and rotational 

equilibrium  154

equipotentials  106

equipotential surfaces  106

examples of equipotentials  106

relationship to eld lines  106

equivalence principle  146

bending of light  146

errors  4

error bars  6

estimation  3

evaporation  89

exchange bosons  78

exchange particles  78

excited state  72

exponential processes  73, 129

F

far point  177

Faraday’s law  113

application of Faraday’s law to moving 

and rotating coils  113

Feynman diagrams  80

bre optics  182–3

elds  105, 111

describing elds  105

electric and gravitational elds 

compared  110

electric potential energy and potential  

109

equipotentials  106

eld lines  105, 106

gravitational potential energy and 

potential  107

orbital motion  108

potential [gravitational and electric]  

105

potential and eld strength  109

propagation  132

uniform elds  110

rst harmonic  49

ssion  76

uid friction  16

uid resistance  13

uids at rest  164

buoyancy and Archimedes’ principle  

164

denitions of density and pressure  

164

hydrostatic equilibrium  164

Pascal’s principle  164

variation of uid pressure  164

uids in motion  165–6

Bernoulli effect  165–6

ideal uid  165

laminar ow, streamlines and the 

continuity equation  165

ux density  112

ux linkage  113

ux losses  115

forces  14

couples 154

different types of forces  14, 16

forces as vectors  14

fundamental forces  71, 78

magnitude  105

measuring forces  14

moment of force (torque)  154

particles that experience and mediate 

the fundamental forces  71

fossil fuels  84

advantages and disadvantages  84

efciency of fossil fuel power stations  

84

energy transformations  84

fractional uncertainties  5

frames of reference  9, 131

inertial frame of reference  133, 142

free-body diagrams  14

free-fall  11

experiment to determine free-fall 

acceleration  13

frequency  48

atomic clock frequency shifts  148

driving frequency  168

Larmor frequency  188

natural frequency and resonance  168

threshold frequency  121

ultrasound  187

friction  14, 16

coefcient of friction  20

static and dynamic factors affecting 

friction  20

fundamental units  2

fusion  28, 76

nuclear fusion  205

G

galaxies  191

distributions of galaxies  202

experimental observations  203

motion of galaxies  202

rotation curves  208, 209

Galilean transformations  131

failure of Galilean transformation 

equations  131

gamma radiation  72

gases  25, 26

equation of state  30

experimental investigations  29

gas laws  29–30

greenhouse gases  92

ideal gases and real gases  30

molecular model of an ideal gas  31

gauge bosons  78

Geiger counters  73

general relativity  146

applications of general relativity to the 

universe as a whole  149

geometric optics  43

geometry of mirrors and lenses  176

global positioning systems  148

global warming  93

evidence for  93

mechanisms  93

possible causes  93

gluons  79

GM tubes  73

graphs  10

acceleration-time graphs  10

choosing what to plot to get a straight 

line  216

displacement-time graphs  10

equation of a straight-line graph  216

exponentials and logs  217

graphical representation of uncertainty  

4

interference of waves  40

logs – base ten and base  217

measuring intercept, gradient and area 

under the graph  215

plotting graphs – axes and best t  215

power laws and logs  217

rotational motion  158

simple harmonic motion [SHM]  34

velocity-time graphs  10

gravitational elds  11

comparison between electric and 

gravitational elds  110

gravitational eld strength  67

gravitational force  14, 16

gravitational lensing  148

gravitational potential  107

escape speed  107

gravitational potential energy  22, 107

gravitational potential gradient  108

gravitational red shift  147

evidence to support gravitational red 

shift  148

gravity  71

centre of gravity  155

dark energy  212

dark matter  212

effect of gravity on spacetime  149

greenhouse effect  92, 93

greenhouse gases  92

H

hadrons  78

half-life  74

example  74

investigating half-life experimentally  

74

simulation  74

half-value thickness  185

harmonics  49

heat  26, 159

heat engines  163

heat ow  25

heat pumps  163

methods of measuring heat capacities 

and specic heat capacities  27

phases of matter and latent heat  28

specic heat capacity  27

Heisenberg uncertainty principle  126

estimates from uncertainty principle  

126

Hertzsprung–Russell diagram  197

interpretation  200

Higgs bosons  78, 79
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Hubble constant  203

Hubble’s law  203

Huygen’s principle  97

hydraulic systems  164

hydroelectric power  87

advantages and disadvantages  87

hydrogen spectrum  123

hydrostatic equilibrium  164, 192

hysteresis  115

I

ideal gases  30

ideal gas laws  29, 30

ideal gas processes  161

kinetic model of an ideal gas  31

work done during expansion at 

constant pressure  160

image formation  171

image formation in convex lenses  173

image formation in mirrors  176

real and virtual images  171

stick in water  171

wave model of image formation  172

imaging  171–88, 189

aberrations  178

astronomical reecting telescopes  180

channels of communication  184

compound microscope and 

astronomical telescope  179

converging and diverging mirrors  176

converging lenses  172

dispersion, attenuation and noise in 

optical bres  183

diverging lenses  175

bre optics  182

image formation  171

image formation in convex lenses  173

radio telescopes  181

simple magnifying glass  177

thin lens equation  174

ultrasonic imaging  187–8

X-ray imaging techniques  186

X-rays  185

impulse  23

incompressibility  165

inelastic collisions  23

infra-red  89

insulators  51, 89

intensity  39, 90, 185, 188

interference of waves  40

thin parallel lms  100

two-source interference  47, 98

intermolecular forces  26

internal energy  22, 26, 159

internal energy of an ideal monatomic 

gas  159

internal resistance  60

determining internal resistance 

experimentally  60

invariant quantities  136

inverse square law of radiation  39

isotopes  70

J

Jeans criterion  205

K

Kelvin scale  25

kilograms  17

kinetic  theory  26

kinetic energy  22, 33

kinetic friction  20

Kirchoff’s circuit laws  55

example of use of Kirchoff’s laws  59

L

laminar ow  165

lamination  115

latent heat  28

methods of measuring latent heat  28

length contraction  138

calculation of time dilation and length 

contraction  140

derivation of length contraction from 

Lorentz transformation  138

lengths, range of  1

lenses  172

centre of curvature  172

chromatic aberration  178

focal length  172, 175

focal point  172, 175

geometry of mirrors and lenses  176

linear magnication  172, 174

power  172

principal axis  172

spherical aberration  178

thin lens equation  174

Lenz’s law  113

leptons  78

lepton family number  78

lift  14, 16

light

bending of light  146

bending of star light  148

circularly polarized light  41

light clock  137

light curves  207

light energy  22

light gates  11

light waves  35, 40

light years (lys)  191

light-dependent resistors (LDRs)  57

monochromatic light  47

partially plane-polarized light  41

plane-polarized light  41

polarized light  41

speed of light  132

unpolarized light  41

wave–particle duality  122

liquid-crystal displays [LCDs]  42

liquids  26

logarithmic functions  217

natural logarithms  217

longitudinal waves  35

longitudinal sound waves in a pipe  49

Lorentz transformations  134

derivation of effect from Lorentz 

transformation  137

derivation of length contraction from 

Lorentz transformation  138

Lorentz factor  134

Lorentz transformation example  134

luminosity  194

Lyman series  123

M

MACHOs (Massive Astronomical Compact 

Halo Objects)  209

magnetic elds  61

comparison between electric and 

magnetic elds  132

magnetic eld in a solenoid  63

straight wire  63

two parallel wires  63

magnetic force  14, 16, 64

examples of the magnetic eld due to 

currents  62

magnetic eld lines  61

magnetic force on a current  62

magnetic force on a moving charge  62

magnifying glass  177

angular magnication  177

angular size  177

near and far point  177

magnitude  1, 105, 194

orders of magnitude  1, 3

Malus’s law  41

mass  19

centre of mass  152

mass and energy  143

mass defect  75

point masses  67

range of masses  1

unied mass units  75

material dispersion  183

mathematics  5

Cepheid variables  198

Doppler effect  102

exponential decay  129

gravitational red shift  147

motion of galaxies  202

parabolic motion  12

stellar parallax  193

two-source interference  47

wind power  88

matter structure  77

matter waves  122

Maxwell’s equations  132

mean position  33

measurement  1–7, 8

mechanics  9–23, 24

energy and power  22

equilibrium  16

uid resistance and free-fall  13

forces and free-body diagrams  14

mass and weight  19

momentum and impulse  23

motion  9–12

Newton’s rst law of motion  15

Newton’s second law of motion  17

Newton’s third law of motion  18

solid friction  20

work  21

mesons  78, 79

metabolic pathways  72

meteorites  190

methane  92

micrometers  58

microscopes

compound microscopes  179

scanning tunnelling microscopes  127

travelling microscopes  98

microscopic vs macroscopic  26
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conduction  89

ideal gases  30

Milky Way galaxy  191

Minkowski diagrams  139–42

mirrors  176

geometry of mirrors and lenses  176

molar gas constant  30

molar mass  30

mole  30

molecules  26

moment of inertia  156

example  156

moments of inertia for different objects  

156

momentum  17

conservation of momentum  23

equations  144

linear momentum and impulse  23

relativistic momentum and energy  

144

units  144

use of momentum in Newton’s second 

law  23

motion  9

equations of uniform motion  11

equilibrium  16

example of equation of uniform 

motion  10

falling objects  11

uid resistance and free-fall  13

forces and free-body diagrams  14

frames of reference  9, 131

graphical representation  10

instantaneous vs average  9

Newton’s rst law of motion  15

Newton’s second law of motion  17

Newton’s third law of motion  18

practical calculations of uniformly 

accelerated motion  11

projectile motion  12

uniformly accelerated motion  11

multiplication  5

muons  78

muon experiment  138

N

near point  177

nebulae  190

negative temperature coefcient (NTC)  

57

neutrinos  129

neutrons  77

neutron capture  206

Newton’s rst law of motion  15

law of universal gravitation  67, 68

second law of motion  17

third law of motion  18

nitrous oxide  92

NMR (Nuclear Magnetic Resonance)  188

comparison between ultrasound and 

NMR  188

nodes  48

noise  183

normal reaction  14, 16

nuclear energy  22

nuclear energy levels  129

nuclear fusion  205

nuclear physics  70–6, 81, 130

ssion and fusion  76, 205

half-life  74

nuclear energy levels and radioactive 

decay  129

nuclear reactions  75

nuclear stability  70

nucleus  128

nuclide notation  70

radioactivity  72–3

strong nuclear force  71

weak nuclear force  71

nuclear power  85–6

advantages and disadvantages  85

enrichment and reprocessing  86

fusion reactors  86

health and safety risk  86

moderator, control rods and heat 

exchanger  85

nuclear weapons  86

thermal meltdown  86

nuclear reactions  75

articial transmutations  75

mass defect and binding energy  75

unied mass units  75

units  75

worked examples  75

nucleosynthesis  196

nuclear synthesis of heavy elements – 

neutron capture  206

nucleosynthesis off the main sequence  

206

nucleus  128

deviations from Rutherford scattering 

in high energy experiments  128

nuclear radii and nuclear densities  

124

nuclear scattering experiment 

involving electrons  128

size  128

nuclides  70

O

Ohms’ law  55

ohmic and non-ohmic devices  55

Oppenheimer–Volkoff limit  200

optic bre  182

attenuation  183

capacity  183

communications  184

material dispersion  183

noise, ampliers and reshapers  183

types of optic bre  182

waveguide dispersion  183

optically active substances  41

orbital motion  108

energy of an orbiting satellite  108

gravitational potential gradient  108

weightlessness  108

oscillations  33

damping  168

natural frequency and resonance  168

phase of forced oscillations  169

Q factor and damping  168

undamped oscillations  96

output ripple  116

ozone  92

ozone layer  92

P

pair production and pair annihilation  123

parabolas  12

parallax  193

parsecs (pcs)  191, 193

particle acceleration and electric charge  

145

particle physics  78–80, 81

classication of particles  78

conservation laws  78

exchange particles  78

Feynman diagrams  80

leptons  78

particles that experience and mediate 

the fundamental forces  71

quantum chromodynamics  79

quarks  79

standard model  78, 79

Pascal’s principle  164

Paschen series  123

path difference  47

percentage uncertainties  5

periscopes  45

permittivity  117

Pfund series  123

phase  48

in phase  33, 40

out of phase  33, 40

phase difference  40

photoelectric effect  121, 185

example  121

stopping potential experiment  121

photons  145

photovoltaic cells  87

piezoelectric crystals  187

pion decay  131, 145

Planck’s constant  124

plane of vibration  41

planetary nebula  200

planetary systems  190

planets  190

polarization  41

concentration of solutions  42

further examples  42

liquid-crystal displays [LCDs]  42

optically active substances  41

polarizing angle  41

polaroid sunglasses  42

stress analysis  42

positive feedback  93

potential [electric or gravitational]  105, 

107, 109

equipotentials  106

potential and eld strength  109

potential barrier  127

potential difference [electric and 

gravitational] 105, 109

potential due to more than one charge  

109

potential energy store  33

potential inside a charged sphere  109

potentiometers  57

Pound–Rebka–Snider experiment  148

power  22, 82

power dissipation  55

powers  5

precession  188

prexes  2
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pressure law  31

primary cells  60

prismatic reectors  45

projectile motion  12

horizontal component  12

mathematics of parabolic motion  12

vertical component  12

proper length  136

proper time  136

proton–proton (p–p) cycle  196

protons  77

pulsars  196, 200

pumped storage  87

Q

Q factor and damping  168

quality  185

quantities  1, 2

quantized energy  69

quantum chromodynamics  79

quantum physics  121–7, 130

atomic spectra and atomic energy 

states  123

Bohr model of the atom  124

Heisenberg uncertainty principle and 

loss of determinism  126

matter waves  122

photoelectric effect  121

Schrödinger model of the atom  125

tunnelling, potential barrier and 

factors affecting tunnelling 

probability  127

quarks  78,  79

quark connement  79

quasars  200

R

r-process  206

radians  66

radiant energy  22

radiation  89

black-body radiation  90, 194

cosmic microwave background (CMB) 

radiation  73

equilibrium and emissivity  90

intensity  90

isotropic radiation  201, 210

radioactive decay  72

mathematics of exponential decay  

129

nature of alpha, beta and gamma 

decay  72

random decay  73

radioactivity  72–3

background radiation  73

effects of radiation  72

ionizing properties  72

properties of alpha, beta and gamma 

radiations  72

radiation safety  72

random errors  4

rays  35, 39

ray diagrams  43, 171, 173

real gases  30

rectication  115, 116

red shift  103, 195

gravitational red shift  147

reection  43

law of reection  43

reection and transmission  43

reection of two-dimensional plane 

waves  43

total internal reection and critical 

angle  45

types of reection  43

refraction  44–5

double refraction  41

methods for determining refractive 

index experimentally  45

refraction of plane waves  44

refractive index and Snell’s law  44

total internal reection and critical 

angle  45

relativity  131–50, 151

black holes  150

curvature of spacetime  149

equivalence principle  146

general relativity  146, 149

gravitational red shift  147

invariant quantities  136

length contraction and evidence to 

support special relativity  138

Lorentz transformations  134

mass and energy  143

Maxwell’s equations  132

reference frames  131

relativistic mechanics examples  145

relativistic momentum and energy  

144

spacetime diagrams [Minkowski 

diagrams}  139–42

special relativity  133

supporting evidence  148

time dilation  137

twin paradox  140–1

velocity addition  135

relaxation time  188

reshapers  183

resistance  55

investigating resistance  58

resistivity  58

resistors in parallels  56

resistors in series  56

resolution  101

resonance  168, 188

examples of resonance  169

phase of forced oscillations  169

resonance tubes  49

rest mass  136

restoring force  33

Reynolds number  167

root mean square (RMS)  114

rotation curves  209

mathematical models  208

rotational equilibrium  154

rotational motion  152

bicycle wheel  152

energy of rotational motion  157

problem solving and graphical work  

158

relationship between linear and 

rotational quantities  153

summary comparison of equations of 

linear and rotational motion  158

Rydberg constant  123

Rydberg formula  123

S

s-process  206

Sankey diagram  82

scalars  7

scattering  128, 185

Schrödinger model of the atom  125

Schwarzchild radius  150

scientic notation  3

secondary cells  60

recharging secondary cells  60

sensors  57

sensor circuits  57

SI units  2, 144

signicant gures  3

signicant gures in uncertainties  4

simple harmonic motion [SHM]  33

acceleration, velocity and displacement 

during SHM  34, 95

energy changes during SHM  34, 96

equation  95

identication of SHM  95

mass between two springs  33

two examples of SHM  95

simultaneity  133

singularity  150

situation diagrams  65

smoothing circuits  116

Snell’s law  44

solar energy  22

solar power  87, 91

advantages and disadvantages  87

solar constant  91

Solar System  190

solid friction  20

solids  26

sound waves  35, 40

investigating speed of sound 

experimentally  38

spacetime

curvature of spacetime  149

spacetime interval  136

spacetime diagrams  139

calculation of time dilation and length 

contraction  140

examples  139, 140

representing more than one inertial 

frame on same spacetime diagram  

142

twin paradox  140–1

special relativity  133

length contraction and evidence to 

support special relativity  138

postulates of special relativity  133

simultaneity  133

specic heat capacity  27

spectral linewidth  126

spectrometers  99

standing waves  48

stars  190–1

bending of star light  148

binary stars  192

brown dwarf stars  196

classication of stars  195

energy ow for stars  192

luminosity and apparent brightness  

194

main sequence stars  196
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mass-luminosity relation for main 

sequence stars  197

neutron stars  196, 200

red giant stars  196, 199, 200

red supergiant stars  196

stellar clusters  191

stellar evolution  200

stellar parallax  193

stellar types and black holes  196

time spent on the main sequence  205

white dwarf stars  196, 200

static friction  20

steady ow  165

Stefan-Boltzmann law  90, 195

stellar spectra  195

absorption lines  195

Stokes’ law  167

streamlines  165

stress analysis  42

strobe photography  11

strong interactions  79

strong nuclear force  71

subtraction  5

Sun  191

equilibrium  192

supernovae  200

supernovae and the accelerating 

Universe  204

types of supernovae  207

superposition  40

superposition of wave pulses  40

systematic errors  4

T

tangential stress  167

telescopes

array telescopes  181

astronomical reecting telescopes  180

astronomical telescopes  179

cassegrain mounting  180

comparative performance of Earth-

bound and satellite-borne 

telescopes  181

comparison of reecting and refracting 

telescopes  180

Newtonian mounting  180

radio interferometry telescopes  181

single dish radio telescopes  181

temperature  25, 26

cosmic scale factor and temperature  

210

temperature difference  27

tension  14, 16

thermal capacity  27

thermal energy  22

conduction  89

convection  89

radiation  89

thermal energy transfer  89

thermal equilibrium  25, 90

thermal physics  25, 32

gas laws  29–30

heat and internal energy  26

molecular model of an ideal gas  31

phases [states] of matter and latent 

heat  28

specic heat capacity  27

thermistors  57

thermodynamics  159

rst law of thermodynamics  161

heat  159

internal energy  159

internal energy of an ideal monatomic 

gas  159

second law of thermodynamics  162

surroundings  159

thermodynamic system  159

work  159

thin lens equation  174

real is positive  174

thin parallel lms  100

applications  100

conditions for interference patterns  

100

phase changes  100

ticker timers  11

time  201

time constant  118

velocity-time graphs  10

time dilation  137

calculation of time dilation and length 

contraction  140

derivation of effect from rst principles  

137

derivation of effect from Lorentz 

transformation  137

time period  66

isochronous time period  33

range of times  1

tomography  186

torque  154

totally inelastic collisions  23

transformer operation  114

resistance of the windings (joule 

heating)  115

step-up and step-down transformers  

114

turns ratio  114

transient oscillations  168

translational equilibrium  16, 154

translational motion  152

bicycle wheel  152

relationship between linear and 

rotational quantities  153

transverse waves  35

transverse waves on a string  49

travelling waves  35, 48

trigonometry  7

tubes of ow  165

tunnelling  127

alpha decay  127

scanning tunnelling microscopes  127

turbulent ow  165

Reynolds number  167

two-source interference  47

double-slit interference  98

Young’s double-slit experiment  47, 98

U

ultrasound  187

A- and B-scans  187

acoustic impedance  187

choice of frequency  187

comparison between ultrasound and 

NMR  188

piezoelectric crystals  187

relative intensity levels  188

uncertainties  4–7, 8

error bars  6

estimating the uncertainty range  4

graphical representation of uncertainty  

4

Heisenberg uncertainty principle  126

mathematical representation of 

uncertainties  5

signicant gures in uncertainties  4

uncertainty in intercepts  6

uncertainty in slopes  6

uniformly accelerated motion  11

universal gravitation  67, 68

Universe  191

Big Bang  201

closed Universe  211

cosmic scale factor  203

expansion of the Universe  201

at Universe  211

future of the Universe   211

history of the Universe   210

history of the Universe  203

open Universe  211

supernovae and the accelerating 

Universe  204

upthrust  14, 16

V

vaporization  28

vectors  7

addition/subtraction of vectors  7

components of vectors  7

forces as vectors  14

representing vectors  7

vector diagrams  65

velocity  9

acceleration, velocity and displacement 

during simple harmonic motion 

[SHM]  34, 

95

angular velocity and time period  66

change in velocity  14

Galilean equation  135

relative velocities  9, 140–1

velocity addition  135

velocity gradient  167

velocity-time graphs  10

wave equations  36

vernier callipers  58

Very Long Baseline Interferometry  181

viscosity  167

non-viscosity  165

voltmeters  56

volts  53

W

water  92

water ripples  35, 40

wave–particle duality  122

wave phenomena  95–103, 104

diffraction  97

Doppler effect  102–3

multiple-slit diffraction 99

resolution  101

simple harmonic motion [SHM]  95–6

two-source interference  98

wavefunction  125
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waveguide dispersion  183

wavelength  48

waves  33–49, 50

boundary conditions  49

crests and troughs  35

diffraction  46

electromagnetic spectrum  37, 89

graphs of simple harmonic motion  34

intensity  39

investigating speed of sound 

experimentally  38

nature and production of standing 

[stationary] waves  48

oscillations  33

polarization  41–2

reection  43

refraction  44–5

superposition  40

travelling waves  35

two-source interference of waves  47

wave characteristics  36

wave energy  48

wave equations  36

wave model of image formation  172

wave pulses  35

wavefronts  35, 39

waves along a stretched rope  35

weak interactions  79

weak nuclear force  71

weight  16, 19

weightlessness  108

Wien’s law  90

WIMPs (Weakly Interacting Massive 

Particles)  209

wind power  88

advantages and disadvantages  88

work  21, 159

concepts of energy and work  22

denition  21

examples  21

heat and work  26

pV diagrams and work done  160

when is work done?  21

work done by an ideal gas  160

work function  121

X

X-rays  185

basic X-ray display techniques  185

imaging techniques  186

intensity, quality and attenuation  185

Y

Young’s double-slit experiment  47, 98
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